2.4 Eigenschaften reeler Funktionen

→ Nullstelle (NSe x₀)

 \rightarrow Schnittpunkt mit der x-Achse Sx (x_0 ; 0)

Def.: Die Funktion f(x) hat an der Stelle $x \in \mathcal{D}_f$ Nse, $f(x_0) = 0$

Bsp.: für
$$f(x) = 2x + 2$$
; $x \in \mathbb{R}$

$$f(x) = 0 <=>2x+2 = 0 /-2$$

 $2x = -2 /:2$
 $x = -1 \rightarrow (-1; 0)$

→ Schnitpunkt mit der y-Achse: Sy

Def.: Bei einem Schnitpunkt der y-Achse hat die x-Koordinate immer null.

→ x-Koordinate: Abszisse→ y-Koordinate: Ordinat

Bsp.: für
$$f(x) = 2x + 2$$
; $x \in \mathbb{R}$

f(0) <=>
$$2*0+2=y$$

2 = y
 $\underline{x=0}$; f(0) = 2 $\Rightarrow \underline{Sy(0; 2)}$

→ Symetrie

(Merkhilfe S6)

Def.: Der Graph einer Funktion f(x) ist ...

... achsensymetrisch zur y-Achse, wenn gilt:

$$f(-x) = f(x)$$

... achsensymetrisch zur x-Achse, wenn gilt:

$$f(-y) = f(y)$$

f heist ungerade Funktion

Bsp.:
$$f = f(x) = x^2 + 5$$

y:
$$(-x)^2 + 5 = x^2 + 5$$

 $x^2 + 5 = x^2 + 5$
 \Rightarrow **ist** symetrisch zur **y**-Achse

X:
$$-(x^2 + 5) = x^2 + 5$$

$$- x^2 - 5 \neq x^2 + 5$$

$$\Rightarrow$$
Nicht symetrisch zur x-Achse