mirror of
https://github.com/jmorganca/ollama
synced 2025-10-06 00:32:49 +02:00
feat: add dimensions field to embed requests (#12242)
* feat: add field to truncate embeddings * add openai embeddings for dimensions
This commit is contained in:
@@ -388,8 +388,12 @@ type EmbedRequest struct {
|
||||
// this request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Truncate truncates the input to fit the model's max sequence length.
|
||||
Truncate *bool `json:"truncate,omitempty"`
|
||||
|
||||
// Dimensions truncates the output embedding to the specified dimension.
|
||||
Dimensions int `json:"dimensions,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
@@ -1708,6 +1708,7 @@ Advanced parameters:
|
||||
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
|
||||
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
|
||||
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
|
||||
- `dimensions`: number of dimensions for the embedding
|
||||
|
||||
### Examples
|
||||
|
||||
|
@@ -78,6 +78,7 @@ type JsonSchema struct {
|
||||
type EmbedRequest struct {
|
||||
Input any `json:"input"`
|
||||
Model string `json:"model"`
|
||||
Dimensions int `json:"dimensions,omitempty"`
|
||||
}
|
||||
|
||||
type StreamOptions struct {
|
||||
@@ -1005,7 +1006,7 @@ func EmbeddingsMiddleware() gin.HandlerFunc {
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if err := json.NewEncoder(&b).Encode(api.EmbedRequest{Model: req.Model, Input: req.Input}); err != nil {
|
||||
if err := json.NewEncoder(&b).Encode(api.EmbedRequest{Model: req.Model, Input: req.Input, Dimensions: req.Dimensions}); err != nil {
|
||||
c.AbortWithStatusJSON(http.StatusInternalServerError, NewError(http.StatusInternalServerError, err.Error()))
|
||||
return
|
||||
}
|
||||
|
@@ -558,7 +558,12 @@ func (s *Server) EmbedHandler(c *gin.Context) {
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
embeddings[i] = normalize(embedding)
|
||||
// TODO: this first normalization should be done by the model
|
||||
embedding = normalize(embedding)
|
||||
if req.Dimensions > 0 && req.Dimensions < len(embedding) {
|
||||
embedding = normalize(embedding[:req.Dimensions])
|
||||
}
|
||||
embeddings[i] = embedding
|
||||
return nil
|
||||
})
|
||||
}
|
||||
@@ -584,11 +589,7 @@ func normalize(vec []float32) []float32 {
|
||||
sum += v * v
|
||||
}
|
||||
|
||||
norm := float32(0.0)
|
||||
if sum > 0 {
|
||||
norm = float32(1.0 / math.Sqrt(float64(sum)))
|
||||
}
|
||||
|
||||
norm := float32(1.0 / max(math.Sqrt(float64(sum)), 1e-12))
|
||||
for i := range vec {
|
||||
vec[i] *= norm
|
||||
}
|
||||
|
Reference in New Issue
Block a user