This revamps how we discover GPUs in the system by leveraging the Ollama
runner. This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs. Now the runner does that implicitly based on the actual
device list. In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.
Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.
Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
* auth: fix problems with the ollama keypairs
This change adds several fixes including:
- reading in the pubkey files correctly
- fixing the push unit test to create a keypair file in a temp directory
- not return 500 errors for normal status error
Now that we have a built-in parser abstraction, which was introduced in
<https://github.com/ollama/ollama/pull/12248>, we can modify our harmony
parser to match this and then get rid of nearly all of the
harmony-specific logic in routes.go. We do have a small amount of
code that turns the parser on by default if the architecture matches and
no other built-in parser was provided.
The built-in parser interface was modified in order to handle harmony's
prefill and tool name translation requirements.
The format qwen3-coder uses is relatively unique, both in rendering and
in parsing. To implement parsing, I wrote a custom parser in similar
style to harmony. For the rendering, I found that the logic would be
much more difficult to follow in a template, so I introduced the concept
of a built-in renderer that uses go code, rather than a template to
generate prompts.
I set us up for future built-in parsers and renderers by making it so
they can be specified in a Modelfile like so:
```
RENDERER "qwen3-coder"
PARSER "qwen3-coder"
```
These need to be provided explicitly because the architecture alone is
not enough to understand what format the model expects to receive, and
what format we expect it to output (e.g., qwen3-coder is `qwen3moe`,
which includes other qwen3-family models as well)
I haven't converted harmony to be one of these "built-ins" yet, since
some of it is in flux with the changes @ParthSareen has been making to
move harmony to the runner. It is likely that many other built-ins will
need to move to the runner as well, but I'm able to slightly defer that
decision since qwen3-coder doesn't have thinking (and therefore doesn't
need to be in the runner to make structured outputs work). I expect to
unify harmony with this approach very soon.
Whether a particular model supports tools or thinking was previously
inferred from templates, but without a template we now also use the
parser itself to declare what it supports. If we have future models that
re-use the same parsing format, but have different capabilities, we'll
want to parameterize them and give them different names to be specified
as a `PARSER`.
Misc changes:
- I worked on the renderer by diffing outputs from the reference
implementation and ours. To make it easier to do this, I extended
<https://github.com/ollama/ollama/pull/11875> to also support
returning the prompt via the openai compat layer
In <https://github.com/ollama/ollama/issues/11704#issuecomment-3177380197>
I noticed that hyphens in function names could possibly cause the model
to become confused. Later in that issue I found other explanations, but
at a minimum tool names with spaces in them are confusing to the model
because of the prompt format.
In this change I create a mapper that converts arbitrary tool names into
valid typescript identifiers. It's a little overly strict in that it
doesn't allow all unicode characters that might be valid in ts
identifiers, but it's still very permissive. Since mappings aren't
reversible, we must temporarily store this mapping in order to unmap it
if the model comes back with a call. We also handle the case where
multiple mappings collide into the same mapping and append a counter to
the end to make them unique
This changes the memory allocation strategy from upfront estimation to
tracking actual allocations done by the engine and reacting to that. The
goal is avoid issues caused by both under-estimation (crashing) and
over-estimation (low performance due to under-utilized GPUs).
It is currently opt-in and can be enabled for models running on the
Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other
cases is unchanged and will continue to use the existing estimates.
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
This patch modifies Ollama to allow grouping GPUs to memory-fit to the requested model, instead of the former algorithm of using one GPU distributing over all available GPUs.
Benefits:
- Lower amount of (PCIe-)bus communication between GPUs - especially when they are not very high speed
- Allowing unallocated GPUs to get into power-saving mode.
- Significantly reduce VRAM allocation when using more than 2 GPUs in a system
- Due to the reduced memory allocation, you can run more models simultaneously.
gpt-oss works best with a context length of at least 8k. However,
for GPUs with limited amount of VRAM, there is a significant
performance hit to this increased context. In these cases, we
switch to the Ollama default of 4k
afaik gpt-oss is the first model that meaningfully transforms tool
function definitions in its template. We found that relatively common
definitions that include `anyOf` were not working because the template
was assuming that types were always defined via a `type` field.
anyOf allows for fully recursive types, so I exposed a
`toTypeScriptType()` function to handle this recursive logic in go and
keep the templates cleaner. The gpt-oss templates will need to be
updated to use this.
We should keep building out our function definition support to more
fully support the parts of json schema that make sense for this use
case, but in the meantime this will unblock some users (e.g., zed's
ollama integration w/ gpt-oss). Probably the most urgent is proper array
support
* bf16
* tests
* gpt-oss
* enable gptoss for engine
* rough estimate
* convert to mxfp4
* handle safetensors U8
* clamp glu/linear
* update tokenizer
* MXFP4 support
This implements the Open Compute Microscaling (MX) FP4 format
as a tensor type with backend implementations focusing
on mulmat and mulmatid on CPU, CUDA, and Metal.
* Unit tests for MXFP4 support
This exercises various operations and shapes on both CPU and GPU (if detected
on the system)
* cuda graph
* unit test adjustments
* cuda: optimize memory access
Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4
* mac: fix crash on old macos versions
cblas_sgemm is only supported on v13.3 and up, however bf16 is
only supported on v14+ so we were falling back to ggml-blas and
crashing on bf16 tensors. Checking for the function being null
seems to be the simplest way to condittionally avoid registering the
backend.
* server: Minimum context length for gptoss
This model requires a minimum context length of 8192 to function
effectively. Users can set higher values through all normal mechanisms
but lower values will be silently reset.
* ggml: Multiply by numParallel for gptoss sliding window
When computing the graph size estimate, the context size is already
multiplied by numParallel so estimates reflect that. However, since
sliding window models use a smaller, fixed context size, they need
to manually take numParallel into account.
* gpt-oss integration
includes harmony parser and thinking levels, etc.
* fix sync
* fix tests
* fix lint
---------
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
The current scheduler algorithm of picking the paralellism based on available
VRAM complicates the upcoming dynamic layer memory allocation algorithm. This
changes the default to 1, with the intent going forward that parallelism is
explicit and will no longer be dynamically determined. Removal of the dynamic
logic will come in a follow up.