Files
ollama/llm/memory_test.go
Daniel Hiltgen bc8909fb38 Use runners for GPU discovery (#12090)
This revamps how we discover GPUs in the system by leveraging the Ollama
runner.  This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs.  Now the runner does that implicitly based on the actual
device list.  In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.

Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.

Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
2025-10-01 15:12:32 -07:00

139 lines
4.5 KiB
Go

package llm
import (
"bytes"
"fmt"
"os"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
)
func TestEstimateGPULayers(t *testing.T) {
t.Setenv("OLLAMA_DEBUG", "1")
t.Setenv("OLLAMA_KV_CACHE_TYPE", "") // Ensure default f16
t.Setenv("OLLAMA_CONTEXT_LENGTH", "2048")
modelName := "dummy"
f, err := os.CreateTemp(t.TempDir(), modelName)
require.NoError(t, err)
defer f.Close()
inputLayerCount := 5
tensors := []*ggml.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}
assert.Len(t, tensors, inputLayerCount+1)
err = ggml.WriteGGUF(f, ggml.KV{
"general.architecture": "llama",
"llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096),
"llama.block_count": uint32(inputLayerCount),
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(32),
"tokenizer.ggml.tokens": []string{" "},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, tensors)
require.NoError(t, err)
ggml, err := LoadModel(f.Name(), 0)
if err != nil {
t.Fatal(err)
}
// Simple CPU scenario
gpus := []discover.GpuInfo{
{
DeviceID: ml.DeviceID{
Library: "cpu",
},
},
}
projectors := []string{}
opts := api.DefaultOptions()
t.Run("cpu", func(t *testing.T) {
estimate := estimateGPULayers(gpus, ggml, projectors, opts, 1)
assert.Equal(t, 0, estimate.Layers)
assert.Equal(t, uint64(0), estimate.Graph)
})
// derived from the dummy ggml file above
graphPartialOffload := uint64(202377216)
graphFullOffload := uint64(171968512)
layerSize := uint64(33554436)
projectorSize := uint64(0)
memoryLayerOutput := uint64(4)
// Dual CUDA scenario with asymmetry
gpuMinimumMemory := uint64(2048)
gpus = []discover.GpuInfo{
{
DeviceID: ml.DeviceID{
Library: "cuda",
},
MinimumMemory: gpuMinimumMemory,
},
{
DeviceID: ml.DeviceID{
Library: "cuda",
},
MinimumMemory: gpuMinimumMemory,
},
}
// Nested array: GPU0 layer space, GPU1 layer space, expected gpu0, expected gpu1
for i, s := range []struct {
layer0, layer1 uint64
expect0, expect1 int
}{
{1, 1, 1, 1},
{2, 1, 2, 1},
{2, 2, 2, 2},
{1, 2, 1, 2},
{3, 3, 3, 3},
{4, 4, 3, 3},
{6, 6, 3, 3},
{0, 3, 0, 3},
} {
t.Run(fmt.Sprintf("%v", s), func(t *testing.T) {
gpus[0].FreeMemory = 0
gpus[1].FreeMemory = 0
gpus[0].FreeMemory += projectorSize
if s.layer0 > 0 {
gpus[0].FreeMemory += memoryLayerOutput
} else {
gpus[1].FreeMemory += memoryLayerOutput
}
gpus[0].FreeMemory += gpuMinimumMemory + layerSize + s.layer0*layerSize + 1
gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
estimate := estimateGPULayers(gpus, ggml, projectors, opts, 1)
assert.Equal(t, s.expect0+s.expect1, estimate.Layers, "scenario %d: %v", i, s)
assert.Equal(t, []int{s.expect0, s.expect1}, estimate.TensorSplit, "scenario %d: %v", i, s)
var layerSums uint64
for _, b := range estimate.GPUSizes {
layerSums += b
}
if estimate.Layers < inputLayerCount+1 {
assert.Less(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
assert.Equal(t, estimate.VRAMSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
} else {
assert.Equal(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
assert.Equal(t, estimate.TotalSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
}
})
}
}