Files
ollama/model/model_test.go
Michael Yang e1979c571a fix: leaf alt name (#12390)
a leaf node with an alternative name gets all its alternatives names
added into the same branch rather than creating branches themselves
2025-09-23 17:50:53 -07:00

259 lines
6.0 KiB
Go

package model
import (
"errors"
"reflect"
"slices"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/fs"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn"
)
func TestParseTags(t *testing.T) {
cases := []struct {
value string
want Tag
}{
{
value: "output",
want: Tag{
name: "output",
},
},
{
value: "output,alt:token_embd",
want: Tag{
name: "output",
alternatives: []string{
"token_embd",
},
},
},
}
for _, tt := range cases {
t.Run(tt.value, func(t *testing.T) {
got := parseTag(tt.value)
if diff := cmp.Diff(tt.want, got, cmp.AllowUnexported((Tag{}))); diff != "" {
t.Errorf("ParseTags() returned unexpected values (-want +got):\n%s", diff)
}
})
}
}
type fakeBackend struct {
*ggml.Backend
names []string
}
type fakeTensor struct {
*ggml.Tensor
Name string
}
func (m *fakeBackend) Get(name string) ml.Tensor {
if slices.Contains(m.names, name) {
return &fakeTensor{Name: name}
}
return nil
}
func TestPopulateFields(t *testing.T) {
type fakeLayer struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_o"`
}
type fakeModel struct {
Input *nn.Embedding `gguf:"input"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output"`
Layers [2]fakeLayer `gguf:"blk"`
}
var m fakeModel
v := reflect.ValueOf(&m)
v.Elem().Set(populateFields(Base{b: &fakeBackend{
names: []string{
"input.weight",
"blk.0.attn_q.weight",
"blk.0.attn_k.weight",
"blk.0.attn_v.weight",
"blk.1.attn_q.weight",
"blk.1.attn_k.weight",
"blk.1.attn_v.weight",
"output_norm.weight",
"output.weight",
},
}}, v.Elem()))
if diff := cmp.Diff(fakeModel{
Input: &nn.Embedding{Weight: &fakeTensor{Name: "input.weight"}},
OutputNorm: &nn.RMSNorm{Weight: &fakeTensor{Name: "output_norm.weight"}},
Output: &nn.Linear{Weight: &fakeTensor{Name: "output.weight"}},
Layers: [2]fakeLayer{
{
Query: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.attn_q.weight"}},
Key: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.attn_k.weight"}},
Value: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.attn_v.weight"}},
},
{
Query: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.attn_q.weight"}},
Key: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.attn_k.weight"}},
Value: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.attn_v.weight"}},
},
},
}, m); diff != "" {
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
}
}
func TestPopulateFieldsAlternateName(t *testing.T) {
type nested struct {
Weight *nn.Linear `gguf:"a,alt:b"`
}
type fakeModel struct {
Input *nn.Embedding `gguf:"input"`
Output *nn.Linear `gguf:"output,alt:input"`
Nested *nested `gguf:"nested"`
Tensor ml.Tensor `gguf:"leaf,alt:tensor"`
}
var m fakeModel
v := reflect.ValueOf(&m)
v.Elem().Set(populateFields(Base{b: &fakeBackend{
names: []string{
"input.weight",
"nested.b.weight",
"leaf",
},
}}, v.Elem()))
if diff := cmp.Diff(fakeModel{
Input: &nn.Embedding{Weight: &fakeTensor{Name: "input.weight"}},
Output: &nn.Linear{Weight: &fakeTensor{Name: "input.weight"}},
Nested: &nested{
Weight: &nn.Linear{Weight: &fakeTensor{Name: "nested.b.weight"}},
},
Tensor: &fakeTensor{Name: "leaf"},
}, m); diff != "" {
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
}
}
func TestPopulateFieldsPrefixSuffixName(t *testing.T) {
type fakeBlock struct {
A *nn.Linear `gguf:"a"`
B *nn.Linear `gguf:",pre:b_"`
C *nn.Linear `gguf:",suf:_c"`
XY *nn.Linear `gguf:",pre:x_,suf:_y"`
}
type fakeModel struct {
Blocks []fakeBlock `gguf:"blk"`
}
m := fakeModel{
Blocks: make([]fakeBlock, 2),
}
v := reflect.ValueOf(&m)
v.Elem().Set(populateFields(Base{b: &fakeBackend{
names: []string{
"blk.0.a.weight",
"blk.0.b_weight",
"blk.0.b_bias",
"blk.0.weight_c",
"blk.0.x_weight_y",
"blk.1.a.weight",
"blk.1.b_weight",
"blk.1.b_bias",
"blk.1.weight_c",
"blk.1.x_weight_y",
},
}}, v.Elem()))
if diff := cmp.Diff(fakeModel{
Blocks: []fakeBlock{
{
A: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.a.weight"}},
B: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.b_weight"}, Bias: &fakeTensor{Name: "blk.0.b_bias"}},
C: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.weight_c"}},
XY: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.x_weight_y"}},
},
{
A: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.a.weight"}},
B: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.b_weight"}, Bias: &fakeTensor{Name: "blk.1.b_bias"}},
C: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.weight_c"}},
XY: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.x_weight_y"}},
},
},
}, m); diff != "" {
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
}
}
func TestModelForArch(t *testing.T) {
type fakeModel struct {
Model
}
type fakeEmbeddingModel struct {
Model
}
models["model"] = func(c fs.Config) (Model, error) { return fakeModel{}, nil }
models["model_embed"] = func(c fs.Config) (Model, error) { return fakeEmbeddingModel{}, nil }
cases := []struct {
name string
config fs.Config
want any
err error
}{
{
name: "model",
config: fsggml.KV{
"general.architecture": "model",
},
want: fakeModel{},
},
{
name: "embedding",
config: fsggml.KV{
"general.architecture": "model",
"model.pooling_type": uint32(1),
},
want: fakeEmbeddingModel{},
},
{
name: "unsupported",
config: fsggml.KV{
"general.architecture": "unsupported",
},
err: ErrUnsupportedModel,
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got, err := modelForArch(tt.config)
if !errors.Is(err, tt.err) {
t.Fatal(err)
}
if diff := cmp.Diff(tt.want, got); diff != "" {
t.Errorf("modelForArch() returned unexpected values (-want +got):\n%s", diff)
}
})
}
}