mirror of
https://github.com/jmorganca/ollama
synced 2025-10-06 00:32:49 +02:00
This revamps how we discover GPUs in the system by leveraging the Ollama runner. This should eliminate inconsistency between our GPU discovery and the runners capabilities at runtime, particularly for cases where we try to filter out unsupported GPUs. Now the runner does that implicitly based on the actual device list. In some cases free VRAM reporting can be unreliable which can leaad to scheduling mistakes, so this also includes a patch to leverage more reliable VRAM reporting libraries if available. Automatic workarounds have been removed as only one GPU leveraged this, which is now documented. This GPU will soon fall off the support matrix with the next ROCm bump. Additional cleanup of the scheduler and discovery packages can be done in the future once we have switched on the new memory management code, and removed support for the llama runner.
696 lines
21 KiB
Go
696 lines
21 KiB
Go
package server
|
|
|
|
// this test file is to test integration of harmony parser into routes.go (as
|
|
// opposed to harmonyparser_test.go, which tests the parser in isolation)
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"encoding/json"
|
|
"net/http"
|
|
"strings"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/gin-gonic/gin"
|
|
"github.com/ollama/ollama/api"
|
|
"github.com/ollama/ollama/discover"
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/llm"
|
|
)
|
|
|
|
func getTestTools() []api.Tool {
|
|
return []api.Tool{
|
|
{
|
|
Type: "function",
|
|
Function: api.ToolFunction{
|
|
Name: "get_weather",
|
|
Description: "Get the current weather in a given location",
|
|
Parameters: struct {
|
|
Type string `json:"type"`
|
|
Defs any `json:"$defs,omitempty"`
|
|
Items any `json:"items,omitempty"`
|
|
Required []string `json:"required"`
|
|
Properties map[string]api.ToolProperty `json:"properties"`
|
|
}{
|
|
Type: "object",
|
|
Required: []string{"location"},
|
|
Properties: map[string]api.ToolProperty{
|
|
"location": {
|
|
Type: api.PropertyType{"string"},
|
|
Description: "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
Type: "function",
|
|
Function: api.ToolFunction{
|
|
Name: "calculate",
|
|
Description: "Calculate a mathematical expression",
|
|
Parameters: struct {
|
|
Type string `json:"type"`
|
|
Defs any `json:"$defs,omitempty"`
|
|
Items any `json:"items,omitempty"`
|
|
Required []string `json:"required"`
|
|
Properties map[string]api.ToolProperty `json:"properties"`
|
|
}{
|
|
Type: "object",
|
|
Required: []string{"expression"},
|
|
Properties: map[string]api.ToolProperty{
|
|
"expression": {
|
|
Type: api.PropertyType{"string"},
|
|
Description: "The mathematical expression to calculate",
|
|
},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
}
|
|
}
|
|
|
|
func createHarmonyTestModel(t *testing.T) (string, string) {
|
|
t.Helper()
|
|
|
|
return createBinFile(t, ggml.KV{
|
|
"general.architecture": "gptoss",
|
|
"llama.block_count": uint32(1),
|
|
"llama.context_length": uint32(8192),
|
|
"llama.embedding_length": uint32(4096),
|
|
"llama.attention.head_count": uint32(32),
|
|
"llama.attention.head_count_kv": uint32(8),
|
|
"tokenizer.ggml.tokens": []string{""},
|
|
"tokenizer.ggml.scores": []float32{0},
|
|
"tokenizer.ggml.token_type": []int32{0},
|
|
}, []*ggml.Tensor{
|
|
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
{Name: "blk.0.ffn_gate.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
{Name: "blk.0.ffn_up.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
{Name: "blk.0.ffn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
{Name: "blk.0.attn_k.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
{Name: "blk.0.attn_output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
{Name: "blk.0.attn_q.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
{Name: "blk.0.attn_v.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
{Name: "output.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
|
})
|
|
}
|
|
|
|
// TestChatHarmonyParserStreamingRealtime verifies that chunks are emitted as soon as they're available
|
|
func TestChatHarmonyParserStreamingRealtime(t *testing.T) {
|
|
gin.SetMode(gin.TestMode)
|
|
|
|
type step struct {
|
|
input llm.CompletionResponse
|
|
wantContent string
|
|
wantThinking string
|
|
wantToolCalls []api.ToolCall
|
|
}
|
|
|
|
testCases := []struct {
|
|
name string
|
|
steps []step
|
|
only bool
|
|
}{
|
|
{
|
|
name: "content streams as it arrives",
|
|
steps: []step{
|
|
{
|
|
input: llm.CompletionResponse{Content: "<|message|>Hello", Done: false},
|
|
wantContent: "Hello",
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: ", world", Done: false},
|
|
wantContent: ", world",
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: "!<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
|
|
wantContent: "!",
|
|
},
|
|
},
|
|
},
|
|
{
|
|
name: "thinking streams separately from content",
|
|
steps: []step{
|
|
{
|
|
input: llm.CompletionResponse{Content: "<|channel|>analysis<|message|>Thinking...", Done: false},
|
|
wantThinking: "Thinking...",
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: "<|end|>", Done: false},
|
|
// No output expected - just closes the analysis message and resets state to normal
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: "<|start|>assistant<|message|>Answer", Done: false},
|
|
wantContent: "Answer", // After message end, state is reset to normal
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: "<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
|
|
// No output expected - just closes the assistant message
|
|
},
|
|
},
|
|
},
|
|
{
|
|
name: "partial tags buffer until complete",
|
|
steps: []step{
|
|
{
|
|
input: llm.CompletionResponse{Content: "<|chan", Done: false},
|
|
// No output - partial tag
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: "nel|>analysis<|mess", Done: false},
|
|
// No output - still building tags
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: "age|>Deep ", Done: false},
|
|
wantThinking: "Deep ",
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: "thought<|end|>", Done: false},
|
|
wantThinking: "thought",
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: "<|start|>assistant<|message|>Done<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
|
|
wantContent: "Done", // After message end, state is reset to normal
|
|
},
|
|
},
|
|
},
|
|
{
|
|
name: "simple assistant after analysis",
|
|
steps: []step{
|
|
{
|
|
input: llm.CompletionResponse{Content: "<|channel|>analysis<|message|>Think<|end|><|start|>assistant<|message|>Answer<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
|
|
wantContent: "Answer",
|
|
wantThinking: "Think",
|
|
},
|
|
},
|
|
},
|
|
{
|
|
name: "tool call parsed and returned correctly",
|
|
steps: []step{
|
|
{
|
|
input: llm.CompletionResponse{Content: "<|channel|>commentary to=functions.get_weather<|message|>{\"location\":\"San Francisco\"}<|end|><|start|>assistant<|message|>The weather is sunny<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
|
|
wantContent: "The weather is sunny",
|
|
wantToolCalls: []api.ToolCall{
|
|
{
|
|
Function: api.ToolCallFunction{
|
|
Name: "get_weather",
|
|
Arguments: api.ToolCallFunctionArguments{
|
|
"location": "San Francisco",
|
|
},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
name: "tool call with streaming JSON across chunks",
|
|
steps: []step{
|
|
{
|
|
input: llm.CompletionResponse{Content: "<|channel|>commentary to=functions.calculate<|message|>{\"expr", Done: false},
|
|
// No output yet - incomplete JSON
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: "ession\":\"2+", Done: false},
|
|
// Still no output - incomplete JSON
|
|
},
|
|
{
|
|
input: llm.CompletionResponse{Content: "2\"}", Done: true},
|
|
wantToolCalls: []api.ToolCall{
|
|
{
|
|
Function: api.ToolCallFunction{
|
|
Name: "calculate",
|
|
Arguments: api.ToolCallFunctionArguments{
|
|
"expression": "2+2",
|
|
},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
}
|
|
|
|
anyOnlies := false
|
|
for _, tc := range testCases {
|
|
if tc.only {
|
|
anyOnlies = true
|
|
}
|
|
}
|
|
|
|
for _, tc := range testCases {
|
|
if anyOnlies && !tc.only {
|
|
continue
|
|
}
|
|
|
|
t.Run(tc.name, func(t *testing.T) {
|
|
var chunks []api.ChatResponse
|
|
chunkIdx := 0
|
|
|
|
mockResponses := make([]llm.CompletionResponse, len(tc.steps))
|
|
for i, step := range tc.steps {
|
|
mockResponses[i] = step.input
|
|
}
|
|
|
|
mock := mockRunner{
|
|
CompletionFn: func(ctx context.Context, r llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
|
|
for _, resp := range mockResponses {
|
|
fn(resp)
|
|
// Give the handler time to process each response
|
|
time.Sleep(30 * time.Millisecond)
|
|
}
|
|
return nil
|
|
},
|
|
}
|
|
|
|
s := Server{
|
|
sched: &Scheduler{
|
|
pendingReqCh: make(chan *LlmRequest, 1),
|
|
finishedReqCh: make(chan *LlmRequest, 1),
|
|
expiredCh: make(chan *runnerRef, 1),
|
|
unloadedCh: make(chan any, 1),
|
|
loaded: make(map[string]*runnerRef),
|
|
newServerFn: newMockServer(&mock),
|
|
getGpuFn: getGpuFn,
|
|
getCpuFn: getCpuFn,
|
|
reschedDelay: 100 * time.Millisecond,
|
|
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ discover.GpuInfoList, _ bool) bool {
|
|
req.successCh <- &runnerRef{
|
|
llama: &mock,
|
|
}
|
|
return false
|
|
},
|
|
},
|
|
}
|
|
|
|
go s.sched.Run(t.Context())
|
|
|
|
// Create a simple test model
|
|
_, digest := createHarmonyTestModel(t)
|
|
|
|
streamFalse := false
|
|
w := createRequest(t, s.CreateHandler, api.CreateRequest{
|
|
Model: "harmony-test-streaming",
|
|
Files: map[string]string{"test.gguf": digest},
|
|
Template: `<|start|><|end|>{{ with .Tools }}{{ end }}{{ .Prompt }}`,
|
|
Stream: &streamFalse,
|
|
})
|
|
|
|
if w.Code != 200 {
|
|
t.Fatalf("failed to create model: %d", w.Code)
|
|
}
|
|
|
|
// Test chat endpoint with streaming
|
|
streamTrue := true
|
|
w = createRequest(t, s.ChatHandler, api.ChatRequest{
|
|
Model: "harmony-test-streaming",
|
|
Messages: []api.Message{{Role: "user", Content: "Hello"}},
|
|
Stream: &streamTrue,
|
|
Tools: getTestTools(),
|
|
})
|
|
|
|
if w.Code != 200 {
|
|
t.Fatalf("chat request failed: %d - %s", w.Code, w.Body.String())
|
|
}
|
|
|
|
// Parse all chunks
|
|
decoder := json.NewDecoder(w.Body)
|
|
for decoder.More() {
|
|
var chunk api.ChatResponse
|
|
if err := decoder.Decode(&chunk); err != nil {
|
|
t.Fatalf("failed to decode chunk: %v", err)
|
|
}
|
|
if chunk.Message.Content != "" || chunk.Message.Thinking != "" || len(chunk.Message.ToolCalls) > 0 {
|
|
chunks = append(chunks, chunk)
|
|
}
|
|
}
|
|
|
|
// Log received chunks for debugging
|
|
if t.Failed() || len(chunks) == 0 {
|
|
t.Logf("Received %d chunks:", len(chunks))
|
|
for i, chunk := range chunks {
|
|
t.Logf(" Chunk %d: content=%q thinking=%q", i, chunk.Message.Content, chunk.Message.Thinking)
|
|
}
|
|
}
|
|
|
|
// Verify chunks match expected steps
|
|
for i, step := range tc.steps {
|
|
// Skip steps that don't expect any output
|
|
if step.wantContent == "" && step.wantThinking == "" && len(step.wantToolCalls) == 0 {
|
|
continue
|
|
}
|
|
|
|
if chunkIdx >= len(chunks) {
|
|
t.Errorf("step %d: expected chunk not received (wanted content=%q thinking=%q)",
|
|
i, step.wantContent, step.wantThinking)
|
|
continue
|
|
}
|
|
|
|
chunk := chunks[chunkIdx]
|
|
if chunk.Message.Content != step.wantContent || chunk.Message.Thinking != step.wantThinking {
|
|
t.Errorf("step %d: chunk mismatch: got (content=%q, thinking=%q), want (content=%q, thinking=%q)",
|
|
i, chunk.Message.Content, chunk.Message.Thinking, step.wantContent, step.wantThinking)
|
|
}
|
|
|
|
// Check tool calls if expected
|
|
if len(step.wantToolCalls) > 0 {
|
|
if len(chunk.Message.ToolCalls) != len(step.wantToolCalls) {
|
|
t.Errorf("step %d: tool calls count mismatch: got %d, want %d",
|
|
i, len(chunk.Message.ToolCalls), len(step.wantToolCalls))
|
|
} else {
|
|
for j, wantCall := range step.wantToolCalls {
|
|
if j >= len(chunk.Message.ToolCalls) {
|
|
break
|
|
}
|
|
gotCall := chunk.Message.ToolCalls[j]
|
|
if gotCall.Function.Name != wantCall.Function.Name {
|
|
t.Errorf("step %d, tool call %d: name mismatch: got %q, want %q",
|
|
i, j, gotCall.Function.Name, wantCall.Function.Name)
|
|
}
|
|
// Compare arguments as JSON strings for simplicity
|
|
gotArgs, _ := json.Marshal(gotCall.Function.Arguments)
|
|
wantArgs, _ := json.Marshal(wantCall.Function.Arguments)
|
|
if string(gotArgs) != string(wantArgs) {
|
|
t.Errorf("step %d, tool call %d: arguments mismatch: got %s, want %s",
|
|
i, j, string(gotArgs), string(wantArgs))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
chunkIdx++
|
|
}
|
|
|
|
// Check if we have extra chunks
|
|
if chunkIdx < len(chunks) {
|
|
t.Errorf("received %d extra chunks", len(chunks)-chunkIdx)
|
|
for i := chunkIdx; i < len(chunks); i++ {
|
|
t.Logf(" extra chunk %d: content=%q thinking=%q",
|
|
i-chunkIdx, chunks[i].Message.Content, chunks[i].Message.Thinking)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
// TestChatHarmonyParserStreamingSimple is a simpler test that just verifies basic streaming
|
|
func TestChatHarmonyParserStreamingSimple(t *testing.T) {
|
|
gin.SetMode(gin.TestMode)
|
|
|
|
mockResponses := []llm.CompletionResponse{
|
|
{Content: "<|message|>First ", Done: false},
|
|
{Content: "chunk ", Done: false},
|
|
{Content: "here<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
|
|
}
|
|
|
|
mock := mockRunner{
|
|
CompletionFn: func(ctx context.Context, r llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
|
|
t.Logf("Mock received prompt: %q", r.Prompt)
|
|
t.Logf("Mock sending %d responses", len(mockResponses))
|
|
for i, resp := range mockResponses {
|
|
t.Logf("Sending response %d: %q", i, resp.Content)
|
|
fn(resp)
|
|
}
|
|
return nil
|
|
},
|
|
}
|
|
|
|
s := Server{
|
|
sched: &Scheduler{
|
|
pendingReqCh: make(chan *LlmRequest, 1),
|
|
finishedReqCh: make(chan *LlmRequest, 1),
|
|
expiredCh: make(chan *runnerRef, 1),
|
|
unloadedCh: make(chan any, 1),
|
|
loaded: make(map[string]*runnerRef),
|
|
newServerFn: newMockServer(&mock),
|
|
getGpuFn: getGpuFn,
|
|
getCpuFn: getCpuFn,
|
|
reschedDelay: 100 * time.Millisecond,
|
|
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ discover.GpuInfoList, _ bool) bool {
|
|
req.successCh <- &runnerRef{
|
|
llama: &mock,
|
|
}
|
|
return false
|
|
},
|
|
},
|
|
}
|
|
|
|
go s.sched.Run(t.Context())
|
|
|
|
// Create model
|
|
_, digest := createHarmonyTestModel(t)
|
|
streamFalse := false
|
|
w := createRequest(t, s.CreateHandler, api.CreateRequest{
|
|
Model: "gpt-oss",
|
|
Files: map[string]string{"test.gguf": digest},
|
|
Template: `<|start|><|end|>{{ .Tools }}{{ .Prompt }}`,
|
|
Stream: &streamFalse,
|
|
})
|
|
|
|
if w.Code != 200 {
|
|
t.Fatalf("failed to create model: %d", w.Code)
|
|
}
|
|
|
|
// Test streaming
|
|
streamTrue := true
|
|
w = createRequest(t, s.ChatHandler, api.ChatRequest{
|
|
Model: "gpt-oss",
|
|
Messages: []api.Message{{Role: "user", Content: "Hello"}},
|
|
Stream: &streamTrue,
|
|
Tools: getTestTools(),
|
|
})
|
|
|
|
if w.Code != 200 {
|
|
t.Fatalf("chat request failed: %d - %s", w.Code, w.Body.String())
|
|
}
|
|
|
|
// Parse chunks
|
|
var chunks []api.ChatResponse
|
|
decoder := json.NewDecoder(w.Body)
|
|
for decoder.More() {
|
|
var chunk api.ChatResponse
|
|
if err := decoder.Decode(&chunk); err != nil {
|
|
t.Fatalf("failed to decode chunk: %v", err)
|
|
}
|
|
chunks = append(chunks, chunk)
|
|
t.Logf("Received chunk %d: content=%q thinking=%q done=%v",
|
|
len(chunks), chunk.Message.Content, chunk.Message.Thinking, chunk.Done)
|
|
}
|
|
|
|
// Verify we got chunks
|
|
if len(chunks) == 0 {
|
|
t.Fatal("expected streaming chunks, got none")
|
|
}
|
|
|
|
// Verify content
|
|
var content strings.Builder
|
|
for _, chunk := range chunks {
|
|
content.WriteString(chunk.Message.Content)
|
|
}
|
|
|
|
expectedContent := "First chunk here"
|
|
if content.String() != expectedContent {
|
|
t.Errorf("content mismatch: got %q, want %q", content.String(), expectedContent)
|
|
}
|
|
|
|
// Verify we got multiple chunks (streaming)
|
|
contentChunks := 0
|
|
for _, chunk := range chunks {
|
|
if chunk.Message.Content != "" {
|
|
contentChunks++
|
|
}
|
|
}
|
|
|
|
if contentChunks < 2 {
|
|
t.Errorf("expected at least 2 content chunks for streaming, got %d", contentChunks)
|
|
}
|
|
}
|
|
|
|
func TestChatHarmonyParserStreaming(t *testing.T) {
|
|
gin.SetMode(gin.TestMode)
|
|
|
|
type expectedChunk struct {
|
|
afterResponse int // Which mock response this chunk should appear after
|
|
content string // Expected content in this chunk
|
|
thinking string // Expected thinking in this chunk
|
|
}
|
|
|
|
testCases := []struct {
|
|
name string
|
|
mockResponses []llm.CompletionResponse
|
|
expectedChunks []expectedChunk
|
|
wantContent string
|
|
wantThinking string
|
|
}{
|
|
{
|
|
name: "simple message without thinking",
|
|
mockResponses: []llm.CompletionResponse{
|
|
{Content: "<|start|>assistant<|message|>Hello, ", Done: false},
|
|
{Content: "how can I help?", Done: false},
|
|
{Content: "<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
|
|
},
|
|
expectedChunks: []expectedChunk{
|
|
{afterResponse: 1, content: "Hello, "},
|
|
{afterResponse: 2, content: "how can I help?"},
|
|
},
|
|
wantContent: "Hello, how can I help?",
|
|
},
|
|
{
|
|
name: "message with analysis channel for thinking",
|
|
mockResponses: []llm.CompletionResponse{
|
|
{Content: "<|channel|>analysis<|message|>", Done: false},
|
|
{Content: "Let me think ", Done: false},
|
|
{Content: "about this problem...", Done: false},
|
|
{Content: "<|end|>", Done: false},
|
|
{Content: "<|start|>assistant<|message|>", Done: false},
|
|
{Content: "The answer ", Done: false},
|
|
{Content: "is 42", Done: false},
|
|
{Content: "<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
|
|
},
|
|
expectedChunks: []expectedChunk{
|
|
{afterResponse: 2, thinking: "Let me think "},
|
|
{afterResponse: 3, thinking: "about this problem..."},
|
|
{afterResponse: 6, content: "The answer "},
|
|
{afterResponse: 7, content: "is 42"},
|
|
},
|
|
wantContent: "The answer is 42",
|
|
wantThinking: "Let me think about this problem...",
|
|
},
|
|
{
|
|
name: "streaming with partial tags across boundaries",
|
|
mockResponses: []llm.CompletionResponse{
|
|
{Content: "<|chan", Done: false},
|
|
{Content: "nel|>analy", Done: false},
|
|
{Content: "sis<|mess", Done: false},
|
|
{Content: "age|>Think", Done: false},
|
|
{Content: "ing deeply...<|end|>", Done: false},
|
|
{Content: "<|start|>assi", Done: false},
|
|
{Content: "stant<|message|>Result ", Done: false},
|
|
{Content: "computed<|e", Done: false},
|
|
{Content: "nd|>", Done: true, DoneReason: llm.DoneReasonStop},
|
|
},
|
|
expectedChunks: []expectedChunk{
|
|
{afterResponse: 4, thinking: "Think"},
|
|
{afterResponse: 5, thinking: "ing deeply..."},
|
|
{afterResponse: 7, content: "Result "},
|
|
{afterResponse: 8, content: "computed"},
|
|
},
|
|
wantContent: "Result computed",
|
|
wantThinking: "Thinking deeply...",
|
|
},
|
|
}
|
|
|
|
for _, tc := range testCases {
|
|
t.Run(tc.name, func(t *testing.T) {
|
|
// Channel to synchronize mock responses with chunk verification
|
|
responsesSent := make(chan int, len(tc.mockResponses))
|
|
|
|
mock := mockRunner{
|
|
CompletionFn: func(ctx context.Context, r llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
|
|
// Send mock responses one at a time, notifying when each is sent
|
|
for i, resp := range tc.mockResponses {
|
|
fn(resp)
|
|
responsesSent <- i + 1
|
|
}
|
|
close(responsesSent)
|
|
return nil
|
|
},
|
|
}
|
|
|
|
s := Server{
|
|
sched: &Scheduler{
|
|
pendingReqCh: make(chan *LlmRequest, 1),
|
|
finishedReqCh: make(chan *LlmRequest, 1),
|
|
expiredCh: make(chan *runnerRef, 1),
|
|
unloadedCh: make(chan any, 1),
|
|
loaded: make(map[string]*runnerRef),
|
|
newServerFn: newMockServer(&mock),
|
|
getGpuFn: getGpuFn,
|
|
getCpuFn: getCpuFn,
|
|
reschedDelay: 250 * time.Millisecond,
|
|
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ discover.GpuInfoList, _ bool) bool {
|
|
req.successCh <- &runnerRef{
|
|
llama: &mock,
|
|
}
|
|
return false
|
|
},
|
|
},
|
|
}
|
|
|
|
go s.sched.Run(t.Context())
|
|
|
|
// Create a minimal model
|
|
_, digest := createHarmonyTestModel(t)
|
|
|
|
// Create model with passthrough template
|
|
stream := false
|
|
w := createRequest(t, s.CreateHandler, api.CreateRequest{
|
|
Model: "harmony-test",
|
|
Files: map[string]string{"file.gguf": digest},
|
|
Template: `<|start|><|end|>{{ with .Tools }}{{ end }}{{ .Prompt }}`,
|
|
Stream: &stream,
|
|
})
|
|
|
|
if w.Code != http.StatusOK {
|
|
t.Fatalf("failed to create model: %d", w.Code)
|
|
}
|
|
|
|
// Test chat endpoint with streaming
|
|
streamTrue := true
|
|
w = createRequest(t, s.ChatHandler, api.ChatRequest{
|
|
Model: "harmony-test",
|
|
Messages: []api.Message{{Role: "user", Content: "Hello"}},
|
|
Stream: &streamTrue,
|
|
Tools: getTestTools(),
|
|
})
|
|
|
|
if w.Code != http.StatusOK {
|
|
t.Fatalf("chat request failed: %d - %s", w.Code, w.Body.String())
|
|
}
|
|
|
|
// Parse streaming response
|
|
var chunks []api.ChatResponse
|
|
var content, thinking strings.Builder
|
|
|
|
decoder := json.NewDecoder(w.Body)
|
|
for decoder.More() {
|
|
var chunk api.ChatResponse
|
|
if err := decoder.Decode(&chunk); err != nil {
|
|
t.Fatalf("failed to decode chunk: %v", err)
|
|
}
|
|
chunks = append(chunks, chunk)
|
|
|
|
// Accumulate content and thinking from each chunk
|
|
content.WriteString(chunk.Message.Content)
|
|
thinking.WriteString(chunk.Message.Thinking)
|
|
|
|
// Debug output
|
|
t.Logf("Chunk %d: content=%q thinking=%q done=%v", len(chunks), chunk.Message.Content, chunk.Message.Thinking, chunk.Done)
|
|
}
|
|
|
|
// Verify we got streaming chunks
|
|
if len(chunks) == 0 {
|
|
t.Fatal("expected streaming chunks, got none")
|
|
}
|
|
|
|
gotContent := content.String()
|
|
gotThinking := thinking.String()
|
|
|
|
if gotContent != tc.wantContent {
|
|
t.Errorf("content mismatch: got %q, want %q", gotContent, tc.wantContent)
|
|
}
|
|
if gotThinking != tc.wantThinking {
|
|
t.Errorf("thinking mismatch: got %q, want %q", gotThinking, tc.wantThinking)
|
|
}
|
|
|
|
// Verify last chunk has done=true
|
|
lastChunk := chunks[len(chunks)-1]
|
|
if !lastChunk.Done {
|
|
t.Error("expected last chunk to have done=true")
|
|
}
|
|
})
|
|
}
|
|
}
|