Files
ollama/llm/memory.go
Daniel Hiltgen bc8909fb38 Use runners for GPU discovery (#12090)
This revamps how we discover GPUs in the system by leveraging the Ollama
runner.  This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs.  Now the runner does that implicitly based on the actual
device list.  In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.

Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.

Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
2025-10-01 15:12:32 -07:00

501 lines
15 KiB
Go

package llm
import (
"fmt"
"log/slog"
"os"
"sort"
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
)
// pickBestFullFitByLibrary will try to find the optimal placement of the model in the available GPUs where the model fully fits
// The list of GPUs returned will always be the same brand (library)
// If the model can not be fit fully within the available GPU(s) nil is returned
func pickBestFullFitByLibrary(f *ggml.GGML, modelPath string, projectors []string, adapters []string, opts api.Options, gpus discover.GpuInfoList, numParallel int) discover.GpuInfoList {
for _, gl := range gpus.ByLibrary() {
sgl := append(make(discover.GpuInfoList, 0, len(gl)), gl...)
// TODO - potentially sort by performance capability, existing models loaded, etc.
// TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
// Note: at present, this will favor most current available VRAM descending and ignoring faster GPU speed in mixed setups
sort.Sort(sort.Reverse(discover.ByFreeMemory(sgl)))
if !envconfig.SchedSpread() {
// Try to pack into as few GPUs as possible, starting from 1 GPU
for numGPUs := 1; numGPUs <= len(sgl); numGPUs++ {
gpuSubset := sgl[:numGPUs]
ok, estimatedVRAM := predictServerFit(gpuSubset, f, adapters, projectors, opts, numParallel)
if ok {
slog.Info("new model will fit in available VRAM across minimum required GPUs, loading",
"model", modelPath,
"library", sgl[0].Library,
"parallel", numParallel,
"required", format.HumanBytes2(estimatedVRAM),
"gpus", numGPUs)
return gpuSubset
}
}
} else {
// TODO future refinements
// - if multiple Libraries, see if any single GPU in any Library will fit
// - try subsets of GPUs instead of just falling back to 1 or all in a family
// Now try all the GPUS (OLLAMA_SCHED_SPREAD is set)
if ok, estimatedVRAM := predictServerFit(sgl, f, adapters, projectors, opts, numParallel); ok {
slog.Info("new model will fit in available VRAM, loading",
"model", modelPath,
"library", sgl[0].Library,
"parallel", numParallel,
"required", format.HumanBytes2(estimatedVRAM),
"gpus", len(sgl))
return sgl
}
}
}
return nil
}
// If multiple Libraries are detected, pick the Library which loads the most layers for the model
func pickBestPartialFitByLibrary(f *ggml.GGML, projectors []string, adapters []string, opts api.Options, gpus discover.GpuInfoList, numParallel int) discover.GpuInfoList {
byLibrary := gpus.ByLibrary()
if len(byLibrary) <= 1 {
return gpus
}
var bestEstimate uint64
var bestFit int
for i, gl := range byLibrary {
_, estimatedVRAM := predictServerFit(gl, f, adapters, projectors, opts, numParallel)
if estimatedVRAM > bestEstimate {
bestEstimate = estimatedVRAM
bestFit = i
}
}
return byLibrary[bestFit]
}
// This algorithm looks for a complete fit to determine if we need to unload other models
func predictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (bool, uint64) {
// Split up the GPUs by type and try them
var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() {
var layerCount int
estimate := estimateGPULayers(gpus, f, projectors, opts, numParallel)
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
return true, estimatedVRAM
}
} else {
if layerCount > 0 && layerCount >= opts.NumGPU {
return true, estimatedVRAM
}
}
if len(gpus) == 1 && gpus[0].Library == "cpu" && estimate.TotalSize <= gpus[0].FreeMemory {
return true, estimatedVRAM
}
}
return false, estimatedVRAM
}
type MemoryEstimate struct {
// How many layers we predict we can load
Layers int
// The size of the graph which occupies the main GPU
Graph uint64
// How much VRAM will be allocated given the number of layers we predict
VRAMSize uint64
// The total size of the model if loaded into VRAM. If all layers are loaded, VRAMSize == TotalSize
TotalSize uint64
// For multi-GPU scenarios, this provides the tensor split parameter
TensorSplit []int
// For multi-GPU scenarios, this is the size in bytes per GPU
GPUSizes []uint64
// internal fields for logging purposes
inferenceLibrary string
layersRequested int
layersModel int
availableList []string
kv uint64
allocationsList []string
memoryWeights uint64
memoryLayerOutput uint64
graphFullOffload uint64
graphPartialOffload uint64
projectorWeights, projectorGraph uint64
}
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
func estimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options, numParallel int) MemoryEstimate {
// Graph size for a partial offload, applies to all GPUs
var graphPartialOffload uint64
// Graph size when all layers are offloaded, applies to all GPUs
var graphFullOffload uint64
// Final graph offload once we know full or partial
var graphOffload uint64
// Projectors loaded into GPU0 only
var llamaEngineProjectorWeights uint64
// Projectors loaded with output layer
var ollamaEngineProjectorWeights uint64
var ollamaEngineProjectorGraph uint64
// Conditional output size on GPU 0
var memoryLayerOutput uint64
// The sizes of a layer
var layerSize uint64
// The sum of all the layer sizes (just for logging)
var memoryWeights uint64
// True if all the layers are loaded
var fullyLoaded bool
// Overflow that didn't fit into the GPU
var overflow uint64
overhead := envconfig.GpuOverhead()
availableList := make([]string, len(gpus))
for i, gpu := range gpus {
availableList[i] = format.HumanBytes2(gpu.FreeMemory)
}
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
for _, projector := range projectors {
llamaEngineProjectorWeights += projectorMemoryRequirements(projector)
}
if llamaEngineProjectorWeights == 0 {
ollamaEngineProjectorWeights, ollamaEngineProjectorGraph = f.VisionGraphSize()
}
layers := f.Tensors().GroupLayers()
// add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok {
layerSize = blk0.Size()
} else {
slog.Warn("model missing blk.0 layer size")
}
useFlashAttention := (envconfig.FlashAttention() || f.FlashAttention()) &&
(discover.GpuInfoList)(gpus).FlashAttentionSupported() &&
f.SupportsFlashAttention()
var kvct string
if useFlashAttention {
requested := strings.ToLower(envconfig.KvCacheType())
if f.SupportsKVCacheType(requested) {
kvct = requested
}
}
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), numParallel, kvct, useFlashAttention)
if len(kv) > 0 {
layerSize += kv[0]
}
var kvTotal uint64
for _, kvLayer := range kv {
kvTotal += kvLayer
}
if graphPartialOffload == 0 {
headsKV := f.KV().HeadCountKVMin()
if headsKV == 0 {
headsKV = 1
}
gqa := f.KV().HeadCountMax() / headsKV
graphPartialOffload = gqa * kvTotal / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload
}
// on metal there's no partial offload overhead
if gpus[0].Library == "Metal" {
graphPartialOffload = graphFullOffload
} else if len(gpus) > 1 {
// multigpu should always use the partial graph size
graphFullOffload = graphPartialOffload
}
// Output layer handled at the end if we have space
if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.Size()
}
if layer, ok := layers["output"]; ok {
memoryLayerOutput += layer.Size()
} else if layer, ok := layers["token_embd"]; ok {
memoryLayerOutput += layer.Size()
}
gpuZeroOverhead := llamaEngineProjectorWeights
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
var layerCount int
tensorSplit := make([]int, len(gpus))
gpuAllocations := make([]uint64, len(gpus))
type gs struct {
i int
g *discover.GpuInfo
}
gpusWithSpace := []gs{}
for i := range gpus {
var gzo uint64
if len(gpusWithSpace) == 0 {
gzo = gpuZeroOverhead
}
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
if gpus[i].FreeMemory < overhead+gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
slog.Debug("gpu has too little memory to allocate any layers",
"id", gpus[i].ID,
"library", gpus[i].Library,
"variant", gpus[i].Variant,
"compute", gpus[i].Compute,
"driver", fmt.Sprintf("%d.%d", gpus[i].DriverMajor, gpus[i].DriverMinor),
"name", gpus[i].Name,
"total", format.HumanBytes2(gpus[i].TotalMemory),
"available", format.HumanBytes2(gpus[i].FreeMemory),
"minimum_memory", gpus[i].MinimumMemory,
"layer_size", format.HumanBytes2(layerSize),
"gpu_zer_overhead", format.HumanBytes2(gzo),
"partial_offload", format.HumanBytes2(graphPartialOffload),
"full_offload", format.HumanBytes2(graphFullOffload),
)
continue
}
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
}
var gpuZeroID int
if len(gpusWithSpace) > 0 {
gpuZeroID = gpusWithSpace[0].i
gpuAllocations[gpuZeroID] += gpuZeroOverhead
} else {
overflow += gpuZeroOverhead
}
// For all the layers, find where they can fit on the GPU(s)
for i := int(f.KV().BlockCount()) - 1; i >= 0; i-- {
// Some models have inconsistent layer sizes
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
layerSize = blk.Size()
layerSize += kv[i]
memoryWeights += blk.Size()
}
if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
// Stop allocating on GPU(s) once we hit the users target NumGPU
overflow += layerSize
continue
}
// distribute the layers across the GPU(s) that have space
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[i%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > overhead+used+layerSize {
gpuAllocations[g.i] += layerSize
tensorSplit[g.i]++
layerCount++
break
} else {
gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
}
}
if len(gpusWithSpace) == 0 {
overflow += layerSize
}
}
if layerCount >= int(f.KV().BlockCount()) {
fullyLoaded = true
}
// Determine if we need to consider output then find where it fits
memoryLastLayer := memoryLayerOutput + ollamaEngineProjectorWeights + ollamaEngineProjectorGraph
if memoryLastLayer > 0 {
if opts.NumGPU < 0 || layerCount < opts.NumGPU {
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > overhead+used+memoryLastLayer {
gpuAllocations[g.i] += memoryLastLayer
tensorSplit[g.i]++
layerCount++
break
}
}
}
if layerCount < int(f.KV().BlockCount())+1 {
fullyLoaded = false
overflow += memoryLastLayer
}
}
// Add the applicable (full or partial) graph allocations
for i := range gpus {
if tensorSplit[i] <= 0 {
continue
}
if fullyLoaded {
gpuAllocations[i] += graphFullOffload
} else {
gpuAllocations[i] += graphPartialOffload
}
}
if fullyLoaded {
graphOffload = graphFullOffload
} else {
graphOffload = graphPartialOffload
}
// Summaries for the log
var memoryRequiredPartial, memoryRequiredTotal uint64
for i := range gpuAllocations {
memoryRequiredPartial += gpuAllocations[i]
}
memoryRequiredTotal = memoryRequiredPartial + overflow
allocationsList := []string{}
for _, a := range gpuAllocations {
allocationsList = append(allocationsList, format.HumanBytes2(a))
}
estimate := MemoryEstimate{
TotalSize: memoryRequiredTotal,
Layers: 0,
Graph: 0,
VRAMSize: 0,
GPUSizes: []uint64{},
inferenceLibrary: gpus[0].Library,
layersRequested: opts.NumGPU,
layersModel: int(f.KV().BlockCount()) + 1,
availableList: availableList,
kv: kvTotal,
allocationsList: allocationsList,
memoryWeights: memoryWeights,
memoryLayerOutput: memoryLayerOutput,
graphFullOffload: graphFullOffload,
graphPartialOffload: graphPartialOffload,
projectorWeights: llamaEngineProjectorWeights + ollamaEngineProjectorWeights,
projectorGraph: ollamaEngineProjectorGraph,
}
if gpus[0].Library == "cpu" {
return estimate
}
if layerCount == 0 {
slog.Debug("insufficient VRAM to load any model layers")
return estimate
}
estimate.Layers = layerCount
estimate.Graph = graphOffload
estimate.VRAMSize = memoryRequiredPartial
estimate.TotalSize = memoryRequiredTotal
estimate.TensorSplit = tensorSplit
estimate.GPUSizes = gpuAllocations
return estimate
}
func (m MemoryEstimate) LogValue() slog.Value {
attrs := []slog.Attr{
slog.String("library", m.inferenceLibrary),
slog.Group(
"layers",
// requested number of layers to offload
"requested", m.layersRequested,
// The number of layers the model has (including output)
"model", m.layersModel,
// estimated number of layers that can be offloaded
"offload", m.Layers,
// multi-gpu split for tensors
"split", m.TensorSplit,
),
slog.Group(
"memory",
// memory available by GPU for offloading
"available", m.availableList,
"gpu_overhead", format.HumanBytes2(envconfig.GpuOverhead()),
slog.Group(
"required",
// memory required for full offloading
"full", format.HumanBytes2(m.TotalSize),
// memory required to offload layers.estimate layers
"partial", format.HumanBytes2(m.VRAMSize),
// memory of KV cache
"kv", format.HumanBytes2(m.kv),
// Allocations across the GPUs
"allocations", m.allocationsList,
),
slog.Group(
"weights",
// memory of the weights
"total", format.HumanBytes2(m.memoryWeights+m.memoryLayerOutput),
// memory of repeating layers
"repeating", format.HumanBytes2(m.memoryWeights),
// memory of non-repeating layers
"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
),
slog.Group(
"graph",
// memory of graph when fully offloaded
"full", format.HumanBytes2(m.graphFullOffload),
// memory of graph when not fully offloaded
"partial", format.HumanBytes2(m.graphPartialOffload),
),
),
}
if m.projectorWeights > 0 {
attrs = append(attrs, slog.Group(
"projector",
"weights", format.HumanBytes2(m.projectorWeights),
"graph", format.HumanBytes2(m.projectorGraph),
))
}
return slog.GroupValue(attrs...)
}
func projectorMemoryRequirements(filename string) (weights uint64) {
file, err := os.Open(filename)
if err != nil {
return 0
}
defer file.Close()
ggml, err := ggml.Decode(file, 1024)
if err != nil {
return 0
}
for _, layer := range ggml.Tensors().GroupLayers() {
weights += layer.Size()
}
return weights
}