Files
ollama/ml/backend.go
Daniel Hiltgen bc8909fb38 Use runners for GPU discovery (#12090)
This revamps how we discover GPUs in the system by leveraging the Ollama
runner.  This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs.  Now the runner does that implicitly based on the actual
device list.  In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.

Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.

Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
2025-10-01 15:12:32 -07:00

365 lines
10 KiB
Go

package ml
import (
"bytes"
"context"
"encoding/binary"
"fmt"
"math"
"slices"
"strconv"
"strings"
"github.com/ollama/ollama/fs"
)
type Backend interface {
// Close frees all memory associated with this backend
Close()
Load(ctx context.Context, progress func(float32)) error
// BackendMemory returns the memory allocations that were made for this model
BackendMemory() BackendMemory
Config() fs.Config
Get(name string) Tensor
NewContext() Context
NewContextSize(size int) Context
// Enumerate the devices available for inference via this backend
BackendDevices() []DeviceInfo
}
// BackendCacheConfig should be implemented by backends that need special output
// from the cache to meet specific requirements. It is frequently implemented in
// conjunction with ScaledDotProductAttention.
type BackendCacheConfig interface {
CacheConfig() CacheConfig
}
// CacheConfig controls optimizations (mostly backend-specific) that may transform
// the output the cache to work better with specific kernels.
type CacheConfig struct {
// CachePadding specifies the multiple for the number of tokens of cache history
// that will be returned from cache Get for k, v and mask. The capacity of the
// cache itself will also be increased to a multiple of this size if needed.
CachePadding int
// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
// and return the permuted version via Get. This uses the cache copy operation
// to avoid a Contiguous call on the permuted tensor.
PermutedV bool
// MaskDType specifies the data type for generating the mask. If unset it will
// default to DTypeF32.
MaskDType DType
// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
// Any position that does not correspond to an actual token will be filled with -Inf.
MaskBatchPadding int
}
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
// AllocMemory causes the backend to allocate memory for the model. If
// false, this is only being used for discovering the required amount of
// memory and cannot load the model for running.
AllocMemory bool
// NumThreads sets the number of threads to use if running on the CPU
NumThreads int
// GPULayers is the set of layers to offload to GPUs
GPULayers GPULayersList
// FlashAttention indicates that we should use a fused flash attention kernel
FlashAttention bool
}
var backends = make(map[string]func(string, BackendParams) (Backend, error))
func RegisterBackend(name string, f func(string, BackendParams) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
backends[name] = f
}
func NewBackend(modelPath string, params BackendParams) (Backend, error) {
if backend, ok := backends["ggml"]; ok {
return backend(modelPath, params)
}
return nil, fmt.Errorf("unsupported backend")
}
type Context interface {
Empty(dtype DType, shape ...int) Tensor
Zeros(dtype DType, shape ...int) Tensor
FromFloatSlice(s []float32, shape ...int) Tensor
FromIntSlice(s []int32, shape ...int) Tensor
// Arange creates a 1D tensor with values within an interval (start, stop] increased by step.
Arange(start, stop, step float32, dtype DType) Tensor
Forward(...Tensor) Context
Compute(...Tensor)
ComputeWithNotify(func(), ...Tensor) // notify callback once compute has begun
// Reserve is analogous to Compute but rather than executing a
// graph, simply preallocates memory. Typically called with a
// worst case graph to ensure all resources are available for
// for future inference.
Reserve()
MaxGraphNodes() int
Close()
// Input returns a context appropriate for creating tensors that are
// inputs to the model (which includes things like output locations)
Input() Context
// Layer returns a context appropriate for creating intermediate tensors
Layer(int) Context
}
type Tensor interface {
Dim(n int) int
Stride(n int) int
Shape() []int
DType() DType
Cast(ctx Context, dtype DType) Tensor
Bytes() []byte
Floats() []float32
SetValueFromIntSlice(s []int32)
Neg(ctx Context) Tensor
Add(ctx Context, t2 Tensor) Tensor
Sub(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Div(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
MulmatFullPrec(ctx Context, t2 Tensor) Tensor
MulmatID(ctx Context, t2, ids Tensor) Tensor
AddID(ctx Context, t2, ids Tensor) Tensor
Softmax(ctx Context) Tensor
L2Norm(ctx Context, eps float32) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
SumRows(ctx Context) Tensor
AvgPool2D(ctx Context, k, s int, p float32) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Sin(ctx Context) Tensor
Cos(ctx Context) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context, up ...Tensor) Tensor
SILU(ctx Context, up ...Tensor) Tensor
RELU(ctx Context, up ...Tensor) Tensor
Sigmoid(ctx Context) Tensor
// AlphaLimitSILU is a variant of SILU that clamps the input to the range [-limit, limit]
SILUAlphaLimit(ctx Context, up Tensor, alpha, limit float32) Tensor
Reshape(ctx Context, shape ...int) Tensor
View(ctx Context, offset int, shape ...int) Tensor
Permute(ctx Context, shape ...int) Tensor
Contiguous(ctx Context, shape ...int) Tensor
Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor
Pad(ctx Context, shape ...int) Tensor
Stack(ctx Context, dim int, s ...Tensor) Tensor
// Repeat repeats the tensor n times along dimension dim
Repeat(ctx Context, dim, n int) Tensor
Concat(ctx Context, t2 Tensor, dim int) Tensor
Rows(ctx Context, t2 Tensor) Tensor
Copy(ctx Context, t2 Tensor) Tensor
Duplicate(ctx Context) Tensor
TopK(ctx Context, k int) Tensor
Argsort(ctx Context) Tensor
Mean(ctx Context) Tensor
Variance(ctx Context) Tensor
Stddev(ctx Context) Tensor
Sqr(ctx Context) Tensor
Sqrt(ctx Context) Tensor
Clamp(ctx Context, min, max float32) Tensor
}
// ScaledDotProductAttention implements a fused attention
// operation equivalent to following code on a tensor named
// query:
//
// query = query.Permute(ctx, 0, 2, 1, 3)
// key = key.Permute(ctx, 0, 2, 1, 3)
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
//
// kq := key.MulmatFullPrec(ctx, query)
//
// kq = kq.Scale(ctx, scale)
//
// if mask != nil {
// kq = kq.Add(ctx, mask)
// }
//
// kq = kq.Softmax(ctx)
//
// kqv := value.Mulmat(ctx, kq)
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
type ScaledDotProductAttention interface {
ScaledDotProductAttention(ctx Context, key, value, mask, sinks Tensor, scale float64) Tensor
}
type number interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
~float32 | ~float64 |
~complex64 | ~complex128
}
func mul[T number](s ...T) T {
p := T(1)
for _, v := range s {
p *= v
}
return p
}
type DumpOptions func(*dumpOptions)
// DumpWithPrecision sets the number of decimal places to print. Applies to float32 and float64.
func DumpWithPrecision(n int) DumpOptions {
return func(opts *dumpOptions) {
opts.Precision = n
}
}
// DumpWithThreshold sets the threshold for printing the entire tensor. If the number of elements
// is less than or equal to this value, the entire tensor will be printed. Otherwise, only the
// beginning and end of each dimension will be printed.
func DumpWithThreshold(n int) DumpOptions {
return func(opts *dumpOptions) {
opts.Threshold = n
}
}
// DumpWithEdgeItems sets the number of elements to print at the beginning and end of each dimension.
func DumpWithEdgeItems(n int) DumpOptions {
return func(opts *dumpOptions) {
opts.EdgeItems = n
}
}
type dumpOptions struct {
Precision, Threshold, EdgeItems int
}
func Dump(ctx Context, t Tensor, optsFuncs ...DumpOptions) string {
opts := dumpOptions{Precision: 4, Threshold: 1000, EdgeItems: 3}
for _, optsFunc := range optsFuncs {
optsFunc(&opts)
}
if mul(t.Shape()...) <= opts.Threshold {
opts.EdgeItems = math.MaxInt
}
switch t.DType() {
case DTypeF32:
return dump[[]float32](ctx, t, opts.EdgeItems, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
})
case DTypeF16, DTypeQ80, DTypeQ40:
f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
f32 = t.Copy(ctx, f32)
return dump[[]float32](ctx, f32, opts.EdgeItems, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts.Precision, 32)
})
case DTypeI32:
return dump[[]int32](ctx, t, opts.EdgeItems, func(i int32) string {
return strconv.FormatInt(int64(i), 10)
})
default:
return "<unsupported>"
}
}
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
if t.Bytes() == nil {
ctx.Forward(t).Compute(t)
}
s := make(S, mul(t.Shape()...))
if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
panic(err)
}
shape := t.Shape()
slices.Reverse(shape)
var sb strings.Builder
var f func([]int, int)
f = func(dims []int, stride int) {
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
sb.WriteString("[")
defer func() { sb.WriteString("]") }()
for i := 0; i < dims[0]; i++ {
if i >= items && i < dims[0]-items {
sb.WriteString("..., ")
// skip to next printable element
skip := dims[0] - 2*items
if len(dims) > 1 {
stride += mul(append(dims[1:], skip)...)
fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
}
i += skip - 1
} else if len(dims) > 1 {
f(dims[1:], stride)
stride += mul(dims[1:]...)
if i < dims[0]-1 {
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
}
} else {
text := fn(s[stride+i])
if len(text) > 0 && text[0] != '-' {
sb.WriteString(" ")
}
sb.WriteString(text)
if i < dims[0]-1 {
sb.WriteString(", ")
}
}
}
}
f(shape, 0)
return sb.String()
}
type DType int
const (
DTypeOther DType = iota
DTypeF32
DTypeF16
DTypeQ80
DTypeQ40
DTypeI32
DTypeMXFP4
)