1
1
mirror of https://github.com/MarginaliaSearch/MarginaliaSearch.git synced 2025-10-05 21:22:39 +02:00

Yet more restructuring. Improved search result ranking.

This commit is contained in:
Viktor Lofgren
2023-03-16 21:35:54 +01:00
parent 5ef17a2a20
commit 449471a076
471 changed files with 19834 additions and 1088 deletions

View File

@@ -10,7 +10,10 @@ or lack an artifact, or to override some default that is inappropriate for the t
* [PorterStemmer](porterstemmer/) - LGPL3
* [Uppend](uppend/) - MIT
* [OpenZIM](openzim/) - GPL-2.0
### Repackaged
* [SymSpell](symspell/) - LGPL-3.0
* [Count-Min-Sketch](count-min-sketch/) - Apache 2.0
### Monkey Patched
* [Stanford OpenNLP](monkey-patch-opennlp/) - Apache-2.0

View File

@@ -0,0 +1,16 @@
plugins {
id 'java'
}
java {
toolchain {
languageVersion.set(JavaLanguageVersion.of(17))
}
}
dependencies {
}
test {
useJUnitPlatform()
}

View File

@@ -0,0 +1,5 @@
# Count Min Sketch
[Count-min-sketch](https://github.com/prasanthj/count-min-sketch/blob/master/src/main/java/com/github/prasanthj/cmsketch/CountMinSketch.java) - Apache-2.0
by prasanthj

View File

@@ -0,0 +1,305 @@
/**
* Copyright 2014 Prasanth Jayachandran
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.github.prasanthj.cmsketch;
import java.nio.ByteBuffer;
/**
* Count Min sketch is a probabilistic data structure for finding the frequency of events in a
* stream of data. The data structure accepts two parameters epsilon and delta, epsilon specifies
* the error in estimation and delta specifies the probability that the estimation is wrong (or the
* confidence interval). The default values are 1% estimation error (epsilon) and 99% confidence
* (1 - delta). Tuning these parameters results in increase or decrease in the size of the count
* min sketch. The constructor also accepts width and depth parameters. The relationship between
* width and epsilon (error) is width = Math.ceil(Math.exp(1.0)/epsilon). In simpler terms, the
* lesser the error is, the greater is the width and hence the size of count min sketch.
* The relationship between delta and depth is depth = Math.ceil(Math.log(1.0/delta)). In simpler
* terms, the more the depth of the greater is the confidence.
* The way it works is, if we need to estimate the number of times a certain key is inserted (or appeared in
* the stream), count min sketch uses pairwise independent hash functions to map the key to
* different locations in count min sketch and increment the counter.
* <p/>
* For example, if width = 10 and depth = 4, lets assume the hashcodes
* for key "HELLO" using pairwise independent hash functions are 9812121, 6565512, 21312312, 8787008
* respectively. Then the counter in hashcode % width locations are incremented.
* <p/>
* 0 1 2 3 4 5 6 7 8 9
* --- --- --- --- --- --- --- --- --- ---
* | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
* --- --- --- --- --- --- --- --- --- ---
* --- --- --- --- --- --- --- --- --- ---
* | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
* --- --- --- --- --- --- --- --- --- ---
* --- --- --- --- --- --- --- --- --- ---
* | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
* --- --- --- --- --- --- --- --- --- ---
* --- --- --- --- --- --- --- --- --- ---
* | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
* --- --- --- --- --- --- --- --- --- ---
* <p/>
* Now for a different key "WORLD", let the hashcodes be 23123123, 45354352, 8567453, 12312312.
* As we can see below there is a collision for 2nd hashcode
* <p/>
* 0 1 2 3 4 5 6 7 8 9
* --- --- --- --- --- --- --- --- --- ---
* | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
* --- --- --- --- --- --- --- --- --- ---
* --- --- --- --- --- --- --- --- --- ---
* | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
* --- --- --- --- --- --- --- --- --- ---
* --- --- --- --- --- --- --- --- --- ---
* | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
* --- --- --- --- --- --- --- --- --- ---
* --- --- --- --- --- --- --- --- --- ---
* | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
* --- --- --- --- --- --- --- --- --- ---
* <p/>
* Now, to get the estimated count for key "HELLO", same process is repeated again to find the
* values in each position and the estimated count will be the minimum of all values (to account for
* hash collisions).
* <p/>
* estimatedCount("HELLO") = min(1, 2, 1, 1)
* <p/>
* so even if there are multiple hash collisions, the returned value will be the best estimate
* (upper bound) for the given key. The actual count can never be greater than this value.
*/
public class CountMinSketch {
// 1% estimation error with 1% probability (99% confidence) that the estimation breaks this limit
private static final float DEFAULT_DELTA = 0.01f;
private static final float DEFAULT_EPSILON = 0.01f;
private final int w;
private final int d;
private final int[][] multiset;
public CountMinSketch() {
this(DEFAULT_DELTA, DEFAULT_EPSILON);
}
public CountMinSketch(float delta, float epsilon) {
this.w = (int) Math.ceil(Math.exp(1.0) / epsilon);
this.d = (int) Math.ceil(Math.log(1.0 / delta));
this.multiset = new int[d][w];
}
public CountMinSketch(int width, int depth) {
this.w = width;
this.d = depth;
this.multiset = new int[d][w];
}
private CountMinSketch(int width, int depth, int[][] ms) {
this.w = width;
this.d = depth;
this.multiset = ms;
}
public int getWidth() {
return w;
}
public int getDepth() {
return d;
}
/**
* Returns the size in bytes after serialization.
*
* @return serialized size in bytes
*/
public long getSizeInBytes() {
return ((w * d) + 2) * (Integer.SIZE / 8);
}
public void set(byte[] key) {
// We use the trick mentioned in "Less Hashing, Same Performance: Building a Better Bloom Filter"
// by Kirsch et.al. From abstract 'only two hash functions are necessary to effectively
// implement a Bloom filter without any loss in the asymptotic false positive probability'
// The paper also proves that the same technique (using just 2 pairwise independent hash functions)
// can be used for Count-Min sketch.
// Lets split up 64-bit hashcode into two 32-bit hashcodes and employ the technique mentioned
// in the above paper
long hash64 = Murmur3.hash64(key);
int hash1 = (int) hash64;
int hash2 = (int) (hash64 >>> 32);
for (int i = 1; i <= d; i++) {
int combinedHash = hash1 + (i * hash2);
// hashcode should be positive, flip all the bits if it's negative
if (combinedHash < 0) {
combinedHash = ~combinedHash;
}
int pos = combinedHash % w;
multiset[i - 1][pos] += 1;
}
}
public void setString(String val) {
set(val.getBytes());
}
public void setByte(byte val) {
set(new byte[]{val});
}
public void setInt(int val) {
// puts int in little endian order
set(intToByteArrayLE(val));
}
public void setLong(long val) {
// puts long in little endian order
set(longToByteArrayLE(val));
}
public void setFloat(float val) {
setInt(Float.floatToIntBits(val));
}
public void setDouble(double val) {
setLong(Double.doubleToLongBits(val));
}
private static byte[] intToByteArrayLE(int val) {
return new byte[]{(byte) (val >> 0),
(byte) (val >> 8),
(byte) (val >> 16),
(byte) (val >> 24)};
}
private static byte[] longToByteArrayLE(long val) {
return new byte[]{(byte) (val >> 0),
(byte) (val >> 8),
(byte) (val >> 16),
(byte) (val >> 24),
(byte) (val >> 32),
(byte) (val >> 40),
(byte) (val >> 48),
(byte) (val >> 56),};
}
public int getEstimatedCount(byte[] key) {
long hash64 = Murmur3.hash64(key);
int hash1 = (int) hash64;
int hash2 = (int) (hash64 >>> 32);
int min = Integer.MAX_VALUE;
for (int i = 1; i <= d; i++) {
int combinedHash = hash1 + (i * hash2);
// hashcode should be positive, flip all the bits if it's negative
if (combinedHash < 0) {
combinedHash = ~combinedHash;
}
int pos = combinedHash % w;
min = Math.min(min, multiset[i - 1][pos]);
}
return min;
}
public int getEstimatedCountString(String val) {
return getEstimatedCount(val.getBytes());
}
public int getEstimatedCountByte(byte val) {
return getEstimatedCount(new byte[]{val});
}
public int getEstimatedCountInt(int val) {
return getEstimatedCount(intToByteArrayLE(val));
}
public int getEstimatedCountLong(long val) {
return getEstimatedCount(longToByteArrayLE(val));
}
public int getEstimatedCountFloat(float val) {
return getEstimatedCountInt(Float.floatToIntBits(val));
}
public int getEstimatedCountDouble(double val) {
return getEstimatedCountLong(Double.doubleToLongBits(val));
}
/**
* Merge the give count min sketch with current one. Merge will throw RuntimeException if the
* provided CountMinSketch is not compatible with current one.
*
* @param that - the one to be merged
*/
public void merge(CountMinSketch that) {
if (that == null) {
return;
}
if (this.w != that.w) {
throw new RuntimeException("Merge failed! Width of count min sketch do not match!" +
"this.width: " + this.getWidth() + " that.width: " + that.getWidth());
}
if (this.d != that.d) {
throw new RuntimeException("Merge failed! Depth of count min sketch do not match!" +
"this.depth: " + this.getDepth() + " that.depth: " + that.getDepth());
}
for (int i = 0; i < d; i++) {
for (int j = 0; j < w; j++) {
this.multiset[i][j] += that.multiset[i][j];
}
}
}
/**
* Serialize the count min sketch to byte array. The format of serialization is width followed by
* depth followed by integers in multiset from row1, row2 and so on..
*
* @return serialized byte array
*/
public static byte[] serialize(CountMinSketch cms) {
long serializedSize = cms.getSizeInBytes();
ByteBuffer bb = ByteBuffer.allocate((int) serializedSize);
bb.putInt(cms.getWidth());
bb.putInt(cms.getDepth());
for (int i = 0; i < cms.getDepth(); i++) {
for (int j = 0; j < cms.getWidth(); j++) {
bb.putInt(cms.multiset[i][j]);
}
}
bb.flip();
return bb.array();
}
/**
* Deserialize the serialized count min sketch.
*
* @param serialized - serialized count min sketch
* @return deserialized count min sketch object
*/
public static CountMinSketch deserialize(byte[] serialized) {
ByteBuffer bb = ByteBuffer.allocate(serialized.length);
bb.put(serialized);
bb.flip();
int width = bb.getInt();
int depth = bb.getInt();
int[][] multiset = new int[depth][width];
for (int i = 0; i < depth; i++) {
for (int j = 0; j < width; j++) {
multiset[i][j] = bb.getInt();
}
}
CountMinSketch cms = new CountMinSketch(width, depth, multiset);
return cms;
}
}

View File

@@ -0,0 +1,317 @@
/**
* Copyright 2014 Prasanth Jayachandran
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.github.prasanthj.cmsketch;
/**
* Murmur3 32 and 128 bit variants.
* 32-bit Java port of https://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp#94
* 128-bit Java port of https://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp#255
*/
class Murmur3 {
// Constants for 32 bit variant
private static final int C1_32 = 0xcc9e2d51;
private static final int C2_32 = 0x1b873593;
private static final int R1_32 = 15;
private static final int R2_32 = 13;
private static final int M_32 = 5;
private static final int N_32 = 0xe6546b64;
// Constants for 128 bit variant
private static final long C1 = 0x87c37b91114253d5L;
private static final long C2 = 0x4cf5ad432745937fL;
private static final int R1 = 31;
private static final int R2 = 27;
private static final int R3 = 33;
private static final int M = 5;
private static final int N1 = 0x52dce729;
private static final int N2 = 0x38495ab5;
private static final int DEFAULT_SEED = 0;
/**
* Murmur3 32-bit variant.
*
* @param data - input byte array
* @return - hashcode
*/
public static int hash32(byte[] data) {
return hash32(data, data.length, DEFAULT_SEED);
}
/**
* Murmur3 32-bit variant.
*
* @param data - input byte array
* @param length - length of array
* @param seed - seed. (default 0)
* @return - hashcode
*/
public static int hash32(byte[] data, int length, int seed) {
int hash = seed;
final int nblocks = length >> 2;
// body
for (int i = 0; i < nblocks; i++) {
int i_4 = i << 2;
int k = (data[i_4] & 0xff)
| ((data[i_4 + 1] & 0xff) << 8)
| ((data[i_4 + 2] & 0xff) << 16)
| ((data[i_4 + 3] & 0xff) << 24);
// mix functions
k *= C1_32;
k = Integer.rotateLeft(k, R1_32);
k *= C2_32;
hash ^= k;
hash = Integer.rotateLeft(hash, R2_32) * M_32 + N_32;
}
// tail
int idx = nblocks << 2;
int k1 = 0;
switch (length - idx) {
case 3:
k1 ^= data[idx + 2] << 16;
case 2:
k1 ^= data[idx + 1] << 8;
case 1:
k1 ^= data[idx];
// mix functions
k1 *= C1_32;
k1 = Integer.rotateLeft(k1, R1_32);
k1 *= C2_32;
hash ^= k1;
}
// finalization
hash ^= length;
hash ^= (hash >>> 16);
hash *= 0x85ebca6b;
hash ^= (hash >>> 13);
hash *= 0xc2b2ae35;
hash ^= (hash >>> 16);
return hash;
}
/**
* Murmur3 64-bit variant. This is essentially MSB 8 bytes of Murmur3 128-bit variant.
*
* @param data - input byte array
* @return - hashcode
*/
public static long hash64(byte[] data) {
return hash64(data, data.length, DEFAULT_SEED);
}
/**
* Murmur3 64-bit variant. This is essentially MSB 8 bytes of Murmur3 128-bit variant.
*
* @param data - input byte array
* @param length - length of array
* @param seed - seed. (default is 0)
* @return - hashcode
*/
public static long hash64(byte[] data, int length, int seed) {
long hash = seed;
final int nblocks = length >> 3;
// body
for (int i = 0; i < nblocks; i++) {
final int i8 = i << 3;
long k = ((long) data[i8] & 0xff)
| (((long) data[i8 + 1] & 0xff) << 8)
| (((long) data[i8 + 2] & 0xff) << 16)
| (((long) data[i8 + 3] & 0xff) << 24)
| (((long) data[i8 + 4] & 0xff) << 32)
| (((long) data[i8 + 5] & 0xff) << 40)
| (((long) data[i8 + 6] & 0xff) << 48)
| (((long) data[i8 + 7] & 0xff) << 56);
// mix functions
k *= C1;
k = Long.rotateLeft(k, R1);
k *= C2;
hash ^= k;
hash = Long.rotateLeft(hash, R2) * M + N1;
}
// tail
long k1 = 0;
int tailStart = nblocks << 3;
switch (length - tailStart) {
case 7:
k1 ^= ((long) data[tailStart + 6] & 0xff) << 48;
case 6:
k1 ^= ((long) data[tailStart + 5] & 0xff) << 40;
case 5:
k1 ^= ((long) data[tailStart + 4] & 0xff) << 32;
case 4:
k1 ^= ((long) data[tailStart + 3] & 0xff) << 24;
case 3:
k1 ^= ((long) data[tailStart + 2] & 0xff) << 16;
case 2:
k1 ^= ((long) data[tailStart + 1] & 0xff) << 8;
case 1:
k1 ^= ((long) data[tailStart] & 0xff);
k1 *= C1;
k1 = Long.rotateLeft(k1, R1);
k1 *= C2;
hash ^= k1;
}
// finalization
hash ^= length;
hash = fmix64(hash);
return hash;
}
/**
* Murmur3 128-bit variant.
*
* @param data - input byte array
* @return - hashcode (2 longs)
*/
public static long[] hash128(byte[] data) {
return hash128(data, data.length, DEFAULT_SEED);
}
/**
* Murmur3 128-bit variant.
*
* @param data - input byte array
* @param length - length of array
* @param seed - seed. (default is 0)
* @return - hashcode (2 longs)
*/
public static long[] hash128(byte[] data, int length, int seed) {
long h1 = seed;
long h2 = seed;
final int nblocks = length >> 4;
// body
for (int i = 0; i < nblocks; i++) {
final int i16 = i << 4;
long k1 = ((long) data[i16] & 0xff)
| (((long) data[i16 + 1] & 0xff) << 8)
| (((long) data[i16 + 2] & 0xff) << 16)
| (((long) data[i16 + 3] & 0xff) << 24)
| (((long) data[i16 + 4] & 0xff) << 32)
| (((long) data[i16 + 5] & 0xff) << 40)
| (((long) data[i16 + 6] & 0xff) << 48)
| (((long) data[i16 + 7] & 0xff) << 56);
long k2 = ((long) data[i16 + 8] & 0xff)
| (((long) data[i16 + 9] & 0xff) << 8)
| (((long) data[i16 + 10] & 0xff) << 16)
| (((long) data[i16 + 11] & 0xff) << 24)
| (((long) data[i16 + 12] & 0xff) << 32)
| (((long) data[i16 + 13] & 0xff) << 40)
| (((long) data[i16 + 14] & 0xff) << 48)
| (((long) data[i16 + 15] & 0xff) << 56);
// mix functions for k1
k1 *= C1;
k1 = Long.rotateLeft(k1, R1);
k1 *= C2;
h1 ^= k1;
h1 = Long.rotateLeft(h1, R2);
h1 += h2;
h1 = h1 * M + N1;
// mix functions for k2
k2 *= C2;
k2 = Long.rotateLeft(k2, R3);
k2 *= C1;
h2 ^= k2;
h2 = Long.rotateLeft(h2, R1);
h2 += h1;
h2 = h2 * M + N2;
}
// tail
long k1 = 0;
long k2 = 0;
int tailStart = nblocks << 4;
switch (length - tailStart) {
case 15:
k2 ^= (long) (data[tailStart + 14] & 0xff) << 48;
case 14:
k2 ^= (long) (data[tailStart + 13] & 0xff) << 40;
case 13:
k2 ^= (long) (data[tailStart + 12] & 0xff) << 32;
case 12:
k2 ^= (long) (data[tailStart + 11] & 0xff) << 24;
case 11:
k2 ^= (long) (data[tailStart + 10] & 0xff) << 16;
case 10:
k2 ^= (long) (data[tailStart + 9] & 0xff) << 8;
case 9:
k2 ^= (long) (data[tailStart + 8] & 0xff);
k2 *= C2;
k2 = Long.rotateLeft(k2, R3);
k2 *= C1;
h2 ^= k2;
case 8:
k1 ^= (long) (data[tailStart + 7] & 0xff) << 56;
case 7:
k1 ^= (long) (data[tailStart + 6] & 0xff) << 48;
case 6:
k1 ^= (long) (data[tailStart + 5] & 0xff) << 40;
case 5:
k1 ^= (long) (data[tailStart + 4] & 0xff) << 32;
case 4:
k1 ^= (long) (data[tailStart + 3] & 0xff) << 24;
case 3:
k1 ^= (long) (data[tailStart + 2] & 0xff) << 16;
case 2:
k1 ^= (long) (data[tailStart + 1] & 0xff) << 8;
case 1:
k1 ^= (long) (data[tailStart] & 0xff);
k1 *= C1;
k1 = Long.rotateLeft(k1, R1);
k1 *= C2;
h1 ^= k1;
}
// finalization
h1 ^= length;
h2 ^= length;
h1 += h2;
h2 += h1;
h1 = fmix64(h1);
h2 = fmix64(h2);
h1 += h2;
h2 += h1;
return new long[]{h1, h2};
}
private static long fmix64(long h) {
h ^= (h >>> 33);
h *= 0xff51afd7ed558ccdL;
h ^= (h >>> 33);
h *= 0xc4ceb9fe1a85ec53L;
h ^= (h >>> 33);
return h;
}
}