
Building Qt-DAB 6.9∗

Jan van Katwijk, Lazy Chair Computing
The Netherlands

April 9, 2025

∗© both the software and this document is with J.vanKatwijk, Lazy Chair Computing. While the
software is available under a GNU GPL V2, the manual is not. No parts of this document may be
reproduced without explicit written permission of the author. I can be reached at J.vanKatwijk at
gmail dot com

1



Contents

2



1 A Note on building an executable

1.1 Introduction

While for both Windows (32 and 64 bits) and x64 Linux precompiled versions are avail-
able, there might be situations were once wants (or needs) to build and executable from
the sources. All developent is done using a gcc based toolchain, for the Windows exe-
cutables the mingw64-xx chain is used. In theory it would be possible to build a Windows
version with the microsoft C and C++ toolchain, due to incompatibilities between the
different toolchains this requires source modifications.

The description here is - therefore - based on the use of a gcc based toolchain for a
unix/linux type system.

The process itself consists of the following steps:

• Download the sources and required libraries;

• Select the AAC decoder;

• Configure deviices and install support libraries;

• Handle further configuration issues;

• Selecting a Viterbi decoder;

• Compiling and installing.

For building, one uses the qmake or the cmake path. Personally I prefer to use qmake,
however, a CMakeLists file is available and building an executable with cmake is cerainly
possible. The CMakeLists.txt contains - in its current form - less possibilities for setting
the configuration than the qt-dab-69.pro file, used for qmake.

Anyway, assuming the configuration settings are done, use

mkdir build

cd build

cmake .. -DXXX=ON

make

(obviously, replace XXX by the setting you want enabled) Note that the CMakeLists.txt
file is set for use with Qt6.

qmake (or qmake-qt5, qmake6 ...)

make

3



1.2 Download the source, the required libraries

For downloading the Qt-DAB sources, one needs ”git” to be present, on a Debian based
system, e.g. Raspbian on an RPI3 or 4

sudo apt-get update

sudo apt-get install git

Sources for Qt-DAB can be downloaded

git clone https://github.com.JvanKatwijk/qt-dab

Sources, specific to Qt-DAB-6.9, can be found in the subdirectory ”qt-dab-6.9”. The
so-called ”.pro” file, i.e. the one processed by qmake, is named ”qt-dab-6.9.pro”.

Continuing on the Debian based system, one should load the required libraries (and
toolchain)

sudo apt-get install qt5-qmake build-essential g++

sudo apt-get install pkg-config

sudo apt-get install libsndfile1-dev

sudo apt-get install libfftw3-dev portaudio19-dev

sudo apt-get install zlib1g-dev

sudo apt-get install libusb-1.0-0-dev mesa-common-dev

sudo apt-get install libgl1-mesa-dev libqt5opengl5-dev

sudo apt-get install libsamplerate0-dev libqwt-qt5-dev qtmultimedia5-dev

sudo apt-get install qtbase5-dev libqt5svg5-dev

Note that building an using Qt-6 will bring some changes, especially in the Qt-Audio
handling. The sources are parameterized on the Qt version, on my development laptop I
can build versions using Qt5 or Qt6 without any need to change the sources. The ”.pro”
file is parameterized on the Qt version as well. The location of the Qwt include files and
library files may differ though.

The CMakeLists.txt file is using the Qt6 and accompanying Qwt libraries,

1.3 Select the AAC decoder

While both the libfaad and libfdk-aac library can be used, the latter is preferred. Unfor-
tunately, not all Linux distribitions provde a correct version. Depending on the choice
in the configuration file (the file qt-dab-6.9.pro)

CONFIG += faad

#CONFIG += fdk-aac

the support library for libfaad or for libfdk-aac needs to be installed. For libfaad one
may try

sudo apt install libfaad

For libfdk-aac one may try

sudo apt install libfdk-aac-dev

4



It turns out that in some cases the libfdk-aac as provided by the Linux distribution
does not work properly. One can easily build the library from the sources as is done for
the AppImage built on Ubuntu 20.

git clone https://github.com/mstorsjo/fdk-aac

cd fdk-aac

mkdir build

cd build

cmake ..

make

sudo make install

1.4 Configure devices and install support libraries

Of course the support library for the device used should be installed as well, the followin
devices can be included in the configuration (note that support for file input is always
included in the configuration):

CONFIG += sdrplay-v2

CONFIG += sdrplay-v3

CONFIG += dabstick-linux

CONFIG += airspy-2

CONFIG += hackrf

CONFIG += lime

CONFIG += soapy

CONFIG += pluto

CONFIG += rtl_tcp

CONFIG += spyServer-16

CONFIG += spyServer-8

It is advised to comment out all devices from the configuration that are not used.

• Support libraries for SDRplay devices can be downloaded from ”SDRplay.com”,

• support for the SDRplay-v2 library (2.11) can be built in, however, for Windows
the v2 library will not work anymore;

• Most Linux distributions provide support libraries for the Airspy, for Lime and for
hackrf devices.

• Support libraries for the Adalm Pluto can be obtained from Analog Devices.

• While most Linux distributions provide a support library for the RT2832 based
dabsticks, they need ”blackboxing ” some kernel modes. It is often easier to
build a linrary yourself, see ”https://osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr”
for details on building a shared library.

• For Soapy, look at ”https://github.com/pothosware/SoapySDR”

• for rtl tcp, and the 8 and 16 bit spy server interface, one needs to install the server,
which is beyonf the scope of this guide.

5



1.5 Handle further configuration issues

The qt-dab-6.9.pro file contains a few possible configuration settings, most of them have
reasonable defaults.

#CONFIG += console

CONFIG -= console

sets whether or not output is to be written to the terminal.

#DEFINES += __MSC_THREAD__

DEFINES += __THREADED_BACKEND__

The first option states whether or not a part of the (rather heavy) FFT operation
in the front end of the processing are to be done in a separate thread or not. For RPI 3
and up there is no need to have that enabled

The second option, when enabled, instructs the software to run each backend on
its own, separate, thread. A ”backend” is the set of modules that interprets a selected
(sub)service. Of course, when running several backends simultaneously, it is beneficial
to have this option enabled.

#CONFIG += double

CONFIG += single

The setting determines whether all computations on the incoming signal (the ”front
end”) are to be done in single or double precision

1.6 Selecting a viterbi decoder

The viterbi decoder, used to transform a sequence of ”soft” bits as being generated by
the front end of Qt-DAB into ”hard” bits, is implemented with different flavours of
support by specialized CPU instructions. The ”.pro” files offers

#CONFIG += viterbi-scalar

#CONFIG += viterbi-sse

#CONFIG += viterbi-avx2

CONFIG += spiral-sse

#CONFIG += spiral-no-sse

As the names suggest, the first and the last do not use specific CPU support, the others
SSE resp. AVX2 support. If unsure: use the first or the last configuration option. For
support from specific (neon) instructions on an RPI, see the ”.pro” file.

1.7 Compiling, installing and running

Once all required libraries are installed, and the configuration is as it should be, run

qmake

6



Depending on the Linux distribution, qmake or qmake-qt5 is the correct name. There
is always a chance that running qmake fails, because some library cannot be found.
Usually this is an issue with the location of the qwt library. Add the correct path to the
qwt include files to the INCLUDES section of the configuration file.

make -j X

The X in the second line tells how many parallel threads should be used. For an
RPI, use 4.

The resulting executable is installed in the subdirectory linux-bin.

2 Adding support for a device

2.1 The Qt-DAB device interface

The Qt-DAB device interface is defined as a class, where the actual device handler
inherits from.

class deviceHandler: public QThread {

Q_OBJECT

public:

deviceHandler ();

virtual ~deviceHandler ();

virtual bool restartReader (int32_t freq);

virtual void stopReader ();

virtual int32_t getSamples (std::complex<float> *, int32_t);

virtual int32_t Samples ();

virtual void resetBuffer ();

virtual int16_t bitDepth () { return 10;}

virtual QString deviceName ();

virtual bool isFileInput ();

virtual int32_t getVFOFrequency ();

//

// all derived classes are subject to visibility settings

// performed by these functions

bool getVisibility ();

void setVisibility (bool);

//

protected:

superFrame myFrame;

int32_t lastFrequency;

int theGain;

signals:

void frameClosed ();

};

While the class is merely an interface class, visibility of the driver’s widget is common
to all inheritors and therefore implemented in the body of this class. The functions to

7



handle visibility are therefore not virtual, they operate op myFrame. The class super-
Frame merely adds controlled termination to a widget.

A device handler for a - yet unknown - device should implement this interface. While
not stated explicitly, it is assumed (and essential) that the samplerate for the delivered
samples is 2048000 Samples/second.

A description of the interface elements follows

• stopReader and restartReader are called on switching from one channel to another,
and their function is what the name suggests, stopping the data stream to Qt-DAB
and restarting the data stream on the given frequency. Note that for most devices
the device-IO is actually stopped and restarted, there is no need to implement it
that way though. Calling restartReader when already running or the stopReader
when already stopped should have no effect.

• getVFOFrequency returns the current oscillator frequency in Hz;

• getSamples is the interface to the samples. It asks for reading the amount (the
number passed as parameter) samples, the return value is the number of samples
actually read into the buffer;

• Samples tells the amount of samples available for reading. If the Qt-DAB software
needs samples, the function Samples is continuously called (with the delay between
the calls) until the required amount is available, after which getSamples is called.

• resetBuffer will clear all buffers. The function is called on a change of channel.

• bitDepth tells the number of bits of the samples. The value is used to scale the Y
axis in the various scopes and to scale the input values when dumping the input.

• deviceName returns a name for the device. Some (dumping) operations use the
devicename in the created filename.

• isFileInput tells - as the name suggests - whether or not the input is from a file or
a device. When file input is ”on”, operations involving e.g. changing the channel
(scanning) are not very useful and will be ignored.

2.2 What is needed to install another device

Having an implementation of the above mentioned functions for the new device, Qt-
DAB has to know about the device handler. This requires adapting the configuration
file (here we look at qt-dab.pro) and the device selector.

8



Modification to the qt-dab.pro file Driver software for a new device, here called
newDevice, should implement a class newDevice, derived from the class deviceHandler.

It is assumed that the header is in a file new-device.h, the implementation in a file
new-device.cpp, both stored in a directory new-device.

The name of a new paragraph, e.g. newDevice, will be added to the list of devices,
i.e.

CONFIG += AIRSPY

...

CONFIG += newDevice

Next, somewhere in the qt-dab.pro file a paragraph describing the files for the new
device should be added, with as name the same name as used in the added line with
CONFIG.

newDevice {

DEFINES += HAVE_NEWDEVICE

INCLUDEPATH += ./qt-devices/new-device

HEADERS += ./qt-devices/new-device/new-device.h \

.. add further includes to development files, if any

SOURCES += ./qt-devices/new-device/new-device.cpp \

.. add further implementation files, if any

FORMS += ./qt-devices/new-device/newdevice-widget.ui

LIBS += .. add here libraries to be included

}

2.3 Modifications to the device selector

The class deviceChooser implements device selection, and is implemented in the file
device-chooser.cpp

In this file, first the include file need to be added, and a constant needs to be chosen
for identifications.

In the list of includes add

#ifdef HAVE_NEWDEVICE

#include new-device.h

#define NEW_DEVICE XXX

#endif

where XXX is a number unique in the device chooser.
The constructor of the class deviceChooser builds op a list (vector) with assocations

between the name of the new device as string, and the constant identifier, defined above.
In the neighbourhood of e.g.

#ifdef HAVE_HACKRF

deviceList. push_back (deviceItem ("hackrf", HACKRF_DEVICE));

#endif

the text

9



#ifdef HAVE_NEWDEVICE

deviceList. push_back (deviceItem ("newDevice", NEW_DEVICE));

#endif

is added.
In the function createDevice code is added to actually create an instance of the

driver for the new device Again, in the environment of

#ifdef HAVE_HACKRF

case HACKRF_DEVICE:

return new hackrfHandler (dabSettings, version);

#endif

the code for allocating a device handler is added

#ifdef HAVE_NEWDEVICE__

case NEW_DEVICE:

return new newDevice (...);

#endif

with parameters as needed.

2.4 Linking or loading of device libraries

The approach taken in the implementation of the different device handlers is to load the
required functions for the device library dynamically, i.e. on instantiation of the class.
This allows execution of Qt-DAB even on systems where some device libraries are not
installed.

The different existing drivers can be used as example if there is a need to implement
the dynamic loading feature. Obviously, if an executable is generated for a target system
that does have the library for the device installed, there is no need to dynamically load
the functions of that library.

10


