mirror of
https://github.com/MarginaliaSearch/MarginaliaSearch.git
synced 2025-10-05 21:22:39 +02:00
(assistant) Improve typeahead suggestions
Implement a new prefix search structure (not a trie, but hash table based) with a concept of score.
This commit is contained in:
@@ -10,7 +10,7 @@ import static com.google.inject.name.Names.named;
|
||||
|
||||
public class AssistantModule extends AbstractModule {
|
||||
public void configure() {
|
||||
bind(Path.class).annotatedWith(named("suggestions-file")).toInstance(WmsaHome.getHomePath().resolve("data/suggestions.txt"));
|
||||
bind(Path.class).annotatedWith(named("suggestions-file")).toInstance(WmsaHome.getHomePath().resolve("data/suggestions2.txt.gz"));
|
||||
|
||||
bind(LanguageModels.class).toInstance(WmsaHome.getLanguageModels());
|
||||
}
|
||||
|
@@ -0,0 +1,459 @@
|
||||
package nu.marginalia.assistant.suggest;
|
||||
|
||||
import gnu.trove.list.array.TIntArrayList;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
/** Unhinged data structure for fast prefix searching.
|
||||
*/
|
||||
public class PrefixSearchStructure {
|
||||
// Core data structures
|
||||
private final HashMap<String, TIntArrayList> prefixIndex; // Short prefix index (up to 8 chars)
|
||||
private final HashMap<String, TIntArrayList> longPrefixIndex; // Long prefix index (9-16 chars)
|
||||
private final ArrayList<String> words; // All words by ID
|
||||
private final TIntArrayList wordScores; // Scores for all words
|
||||
|
||||
// Configuration
|
||||
private static final int SHORT_PREFIX_LENGTH = 8;
|
||||
private static final int MAX_INDEXED_PREFIX_LENGTH = 16;
|
||||
|
||||
public int size() {
|
||||
return words.size();
|
||||
}
|
||||
|
||||
// For sorting efficiency
|
||||
private static class WordScorePair {
|
||||
final String word;
|
||||
final int score;
|
||||
|
||||
WordScorePair(String word, int score) {
|
||||
this.word = word;
|
||||
this.score = score;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new PrefixTrie for typeahead search.
|
||||
*/
|
||||
public PrefixSearchStructure() {
|
||||
prefixIndex = new HashMap<>(1024);
|
||||
longPrefixIndex = new HashMap<>(1024);
|
||||
words = new ArrayList<>(1024);
|
||||
wordScores = new TIntArrayList(1024);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds a prefix to the index.
|
||||
*/
|
||||
private void indexPrefix(String word, int wordId) {
|
||||
// Index short prefixes
|
||||
for (int i = 1; i <= Math.min(word.length(), SHORT_PREFIX_LENGTH); i++) {
|
||||
String prefix = word.substring(0, i);
|
||||
TIntArrayList wordIds = prefixIndex.computeIfAbsent(
|
||||
prefix, k -> new TIntArrayList(16));
|
||||
wordIds.add(wordId);
|
||||
}
|
||||
|
||||
// Index longer prefixes
|
||||
for (int i = SHORT_PREFIX_LENGTH + 1; i <= Math.min(word.length(), MAX_INDEXED_PREFIX_LENGTH); i++) {
|
||||
String prefix = word.substring(0, i);
|
||||
TIntArrayList wordIds = longPrefixIndex.computeIfAbsent(
|
||||
prefix, k -> new TIntArrayList(8));
|
||||
wordIds.add(wordId);
|
||||
}
|
||||
|
||||
// If the word contains spaces, also index by each term for multi-word queries
|
||||
if (word.contains(" ")) {
|
||||
String[] terms = word.split("\\s+");
|
||||
for (String term : terms) {
|
||||
if (term.length() >= 2) {
|
||||
for (int i = 1; i <= Math.min(term.length(), SHORT_PREFIX_LENGTH); i++) {
|
||||
String termPrefix = "t:" + term.substring(0, i);
|
||||
TIntArrayList wordIds = prefixIndex.computeIfAbsent(
|
||||
termPrefix, k -> new TIntArrayList(16));
|
||||
wordIds.add(wordId);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Inserts a word with its associated score.
|
||||
*/
|
||||
public void insert(String word, int score) {
|
||||
if (word == null || word.isEmpty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Add to the word list and index
|
||||
int wordId = words.size();
|
||||
words.add(word);
|
||||
wordScores.add(score);
|
||||
indexPrefix(word, wordId);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the top k completions for a given prefix.
|
||||
*/
|
||||
public List<ScoredSuggestion> getTopCompletions(String prefix, int k) {
|
||||
if (prefix == null || prefix.isEmpty()) {
|
||||
// Return top k words by score
|
||||
return getTopKWords(k);
|
||||
}
|
||||
|
||||
// Check if this is a term search (t:) - for searching within multi-word items
|
||||
boolean isTermSearch = false;
|
||||
if (prefix.startsWith("t:") && prefix.length() > 2) {
|
||||
isTermSearch = true;
|
||||
prefix = prefix.substring(2);
|
||||
}
|
||||
|
||||
// 1. Fast path for short prefixes
|
||||
if (prefix.length() <= SHORT_PREFIX_LENGTH) {
|
||||
String lookupPrefix = isTermSearch ? "t:" + prefix : prefix;
|
||||
TIntArrayList wordIds = prefixIndex.get(lookupPrefix);
|
||||
if (wordIds != null) {
|
||||
return getTopKFromWordIds(wordIds, k);
|
||||
}
|
||||
}
|
||||
|
||||
// 2. Fast path for long prefixes (truncate to MAX_INDEXED_PREFIX_LENGTH)
|
||||
if (prefix.length() > SHORT_PREFIX_LENGTH) {
|
||||
// Try exact match in longPrefixIndex first
|
||||
if (prefix.length() <= MAX_INDEXED_PREFIX_LENGTH) {
|
||||
TIntArrayList wordIds = longPrefixIndex.get(prefix);
|
||||
if (wordIds != null) {
|
||||
return getTopKFromWordIds(wordIds, k);
|
||||
}
|
||||
}
|
||||
|
||||
// If prefix is longer than MAX_INDEXED_PREFIX_LENGTH, truncate and filter
|
||||
if (prefix.length() > MAX_INDEXED_PREFIX_LENGTH) {
|
||||
String truncatedPrefix = prefix.substring(0, MAX_INDEXED_PREFIX_LENGTH);
|
||||
TIntArrayList candidateIds = longPrefixIndex.get(truncatedPrefix);
|
||||
if (candidateIds != null) {
|
||||
// Filter candidates by the full prefix
|
||||
return getFilteredTopKFromWordIds(candidateIds, prefix, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 3. Optimized fallback for long prefixes - use prefix tree for segments
|
||||
List<ScoredSuggestion> results = new ArrayList<>();
|
||||
|
||||
// Handle multi-segment queries by finding candidates from first 8 chars
|
||||
if (prefix.length() > SHORT_PREFIX_LENGTH) {
|
||||
String shortPrefix = prefix.substring(0, Math.min(prefix.length(), SHORT_PREFIX_LENGTH));
|
||||
TIntArrayList candidates = prefixIndex.get(shortPrefix);
|
||||
|
||||
if (candidates != null) {
|
||||
return getFilteredTopKFromWordIds(candidates, prefix, k);
|
||||
}
|
||||
}
|
||||
|
||||
// 4. Last resort - optimized binary search in sorted segments
|
||||
return findByBinarySearchPrefix(prefix, k);
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper to get the top k words by score.
|
||||
*/
|
||||
private List<ScoredSuggestion> getTopKWords(int k) {
|
||||
// Create pairs of (score, wordId)
|
||||
int[][] pairs = new int[words.size()][2];
|
||||
for (int i = 0; i < words.size(); i++) {
|
||||
pairs[i][0] = wordScores.get(i);
|
||||
pairs[i][1] = i;
|
||||
}
|
||||
|
||||
// Sort by score (descending)
|
||||
Arrays.sort(pairs, (a, b) -> Integer.compare(b[0], a[0]));
|
||||
|
||||
// Take top k
|
||||
List<ScoredSuggestion> results = new ArrayList<>();
|
||||
for (int i = 0; i < Math.min(k, pairs.length); i++) {
|
||||
String word = words.get(pairs[i][1]);
|
||||
int score = pairs[i][0];
|
||||
results.add(new ScoredSuggestion(word, score));
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper to get the top k words from a list of word IDs.
|
||||
*/
|
||||
private List<ScoredSuggestion> getTopKFromWordIds(TIntArrayList wordIds, int k) {
|
||||
if (wordIds == null || wordIds.isEmpty()) {
|
||||
return Collections.emptyList();
|
||||
}
|
||||
|
||||
// For small lists, avoid sorting
|
||||
if (wordIds.size() <= k) {
|
||||
List<ScoredSuggestion> results = new ArrayList<>(wordIds.size());
|
||||
int[] ids = wordIds.toArray();
|
||||
for (int wordId : ids) {
|
||||
if (wordId >= 0 && wordId < words.size()) {
|
||||
results.add(new ScoredSuggestion(words.get(wordId), wordScores.get(wordId)));
|
||||
}
|
||||
}
|
||||
results.sort((a, b) -> Integer.compare(b.getScore(), a.getScore()));
|
||||
return results;
|
||||
}
|
||||
|
||||
// For larger lists, use an array-based approach for better performance
|
||||
// Find top k without full sorting
|
||||
int[] topScores = new int[k];
|
||||
int[] topWordIds = new int[k];
|
||||
int[] ids = wordIds.toArray();
|
||||
|
||||
// Initialize with first k elements
|
||||
int filledCount = Math.min(k, ids.length);
|
||||
for (int i = 0; i < filledCount; i++) {
|
||||
int wordId = ids[i];
|
||||
if (wordId >= 0 && wordId < words.size()) {
|
||||
topWordIds[i] = wordId;
|
||||
topScores[i] = wordScores.get(wordId);
|
||||
}
|
||||
}
|
||||
|
||||
// Sort initial elements
|
||||
for (int i = 0; i < filledCount; i++) {
|
||||
for (int j = i + 1; j < filledCount; j++) {
|
||||
if (topScores[j] > topScores[i]) {
|
||||
// Swap scores
|
||||
int tempScore = topScores[i];
|
||||
topScores[i] = topScores[j];
|
||||
topScores[j] = tempScore;
|
||||
|
||||
// Swap word IDs
|
||||
int tempId = topWordIds[i];
|
||||
topWordIds[i] = topWordIds[j];
|
||||
topWordIds[j] = tempId;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Process remaining elements
|
||||
int minScore = filledCount > 0 ? topScores[filledCount - 1] : Integer.MIN_VALUE;
|
||||
|
||||
for (int i = k; i < ids.length; i++) {
|
||||
int wordId = ids[i];
|
||||
if (wordId >= 0 && wordId < words.size()) {
|
||||
int score = wordScores.get(wordId);
|
||||
|
||||
if (score > minScore) {
|
||||
// Replace the lowest element
|
||||
topScores[filledCount - 1] = score;
|
||||
topWordIds[filledCount - 1] = wordId;
|
||||
|
||||
// Bubble up the new element
|
||||
for (int j = filledCount - 1; j > 0; j--) {
|
||||
if (topScores[j] > topScores[j - 1]) {
|
||||
// Swap scores
|
||||
int tempScore = topScores[j];
|
||||
topScores[j] = topScores[j - 1];
|
||||
topScores[j - 1] = tempScore;
|
||||
|
||||
// Swap word IDs
|
||||
int tempId = topWordIds[j];
|
||||
topWordIds[j] = topWordIds[j - 1];
|
||||
topWordIds[j - 1] = tempId;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Update min score
|
||||
minScore = topScores[filledCount - 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Create result list
|
||||
List<ScoredSuggestion> results = new ArrayList<>(filledCount);
|
||||
for (int i = 0; i < filledCount; i++) {
|
||||
results.add(new ScoredSuggestion(words.get(topWordIds[i]), topScores[i]));
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Use binary search on sorted word segments to efficiently find matches.
|
||||
*/
|
||||
private List<ScoredSuggestion> findByBinarySearchPrefix(String prefix, int k) {
|
||||
// If we have a lot of words, use an optimized segment approach
|
||||
if (words.size() > 1000) {
|
||||
// Divide words into segments for better locality
|
||||
int segmentSize = 1000;
|
||||
int numSegments = (words.size() + segmentSize - 1) / segmentSize;
|
||||
|
||||
// Find matches using binary search within each segment
|
||||
List<WordScorePair> allMatches = new ArrayList<>();
|
||||
for (int segment = 0; segment < numSegments; segment++) {
|
||||
int start = segment * segmentSize;
|
||||
int end = Math.min(start + segmentSize, words.size());
|
||||
|
||||
// Binary search for first potential match
|
||||
int pos = Collections.binarySearch(
|
||||
words.subList(start, end),
|
||||
prefix,
|
||||
(a, b) -> a.compareTo(b)
|
||||
);
|
||||
|
||||
if (pos < 0) {
|
||||
pos = -pos - 1;
|
||||
}
|
||||
|
||||
// Collect all matches
|
||||
for (int i = start + pos; i < end && i < words.size(); i++) {
|
||||
String word = words.get(i);
|
||||
if (word.startsWith(prefix)) {
|
||||
allMatches.add(new WordScorePair(word, wordScores.get(i)));
|
||||
} else if (word.compareTo(prefix) > 0) {
|
||||
break; // Past potential matches
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Sort by score and take top k
|
||||
allMatches.sort((a, b) -> Integer.compare(b.score, a.score));
|
||||
List<ScoredSuggestion> results = new ArrayList<>(Math.min(k, allMatches.size()));
|
||||
for (int i = 0; i < Math.min(k, allMatches.size()); i++) {
|
||||
WordScorePair pair = allMatches.get(i);
|
||||
results.add(new ScoredSuggestion(pair.word, pair.score));
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
// Fallback for small dictionaries - linear scan but optimized
|
||||
return simpleSearchFallback(prefix, k);
|
||||
}
|
||||
|
||||
/**
|
||||
* Optimized linear scan - only used for small dictionaries.
|
||||
*/
|
||||
private List<ScoredSuggestion> simpleSearchFallback(String prefix, int k) {
|
||||
// Use primitive arrays for better cache locality
|
||||
int[] matchScores = new int[Math.min(words.size(), 100)]; // Assume we won't find more than 100 matches
|
||||
String[] matchWords = new String[matchScores.length];
|
||||
int matchCount = 0;
|
||||
|
||||
for (int i = 0; i < words.size() && matchCount < matchScores.length; i++) {
|
||||
String word = words.get(i);
|
||||
if (word.startsWith(prefix)) {
|
||||
matchWords[matchCount] = word;
|
||||
matchScores[matchCount] = wordScores.get(i);
|
||||
matchCount++;
|
||||
}
|
||||
}
|
||||
|
||||
// Sort matches by score (in-place for small arrays)
|
||||
for (int i = 0; i < matchCount; i++) {
|
||||
for (int j = i + 1; j < matchCount; j++) {
|
||||
if (matchScores[j] > matchScores[i]) {
|
||||
// Swap scores
|
||||
int tempScore = matchScores[i];
|
||||
matchScores[i] = matchScores[j];
|
||||
matchScores[j] = tempScore;
|
||||
|
||||
// Swap words
|
||||
String tempWord = matchWords[i];
|
||||
matchWords[i] = matchWords[j];
|
||||
matchWords[j] = tempWord;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Create results
|
||||
List<ScoredSuggestion> results = new ArrayList<>(Math.min(k, matchCount));
|
||||
for (int i = 0; i < Math.min(k, matchCount); i++) {
|
||||
results.add(new ScoredSuggestion(matchWords[i], matchScores[i]));
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get top k words from candidate IDs, filtering by the full prefix.
|
||||
*/
|
||||
private List<ScoredSuggestion> getFilteredTopKFromWordIds(TIntArrayList wordIds, String fullPrefix, int k) {
|
||||
if (wordIds == null || wordIds.isEmpty()) {
|
||||
return Collections.emptyList();
|
||||
}
|
||||
|
||||
// Make primitive arrays for better performance
|
||||
String[] matchWords = new String[Math.min(wordIds.size(), 1000)];
|
||||
int[] matchScores = new int[matchWords.length];
|
||||
int matchCount = 0;
|
||||
|
||||
int[] ids = wordIds.toArray();
|
||||
for (int i = 0; i < ids.length && matchCount < matchWords.length; i++) {
|
||||
int wordId = ids[i];
|
||||
if (wordId >= 0 && wordId < words.size()) {
|
||||
String word = words.get(wordId);
|
||||
if (word.startsWith(fullPrefix)) {
|
||||
matchWords[matchCount] = word;
|
||||
matchScores[matchCount] = wordScores.get(wordId);
|
||||
matchCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Sort by score (efficient insertion sort for small k)
|
||||
for (int i = 0; i < Math.min(matchCount, k); i++) {
|
||||
int maxPos = i;
|
||||
for (int j = i + 1; j < matchCount; j++) {
|
||||
if (matchScores[j] > matchScores[maxPos]) {
|
||||
maxPos = j;
|
||||
}
|
||||
}
|
||||
if (maxPos != i) {
|
||||
// Swap
|
||||
int tempScore = matchScores[i];
|
||||
matchScores[i] = matchScores[maxPos];
|
||||
matchScores[maxPos] = tempScore;
|
||||
|
||||
String tempWord = matchWords[i];
|
||||
matchWords[i] = matchWords[maxPos];
|
||||
matchWords[maxPos] = tempWord;
|
||||
}
|
||||
}
|
||||
|
||||
// Create result list (only up to k elements)
|
||||
List<ScoredSuggestion> results = new ArrayList<>(Math.min(k, matchCount));
|
||||
for (int i = 0; i < Math.min(k, matchCount); i++) {
|
||||
results.add(new ScoredSuggestion(matchWords[i], matchScores[i]));
|
||||
}
|
||||
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* Class representing a suggested completion.
|
||||
*/
|
||||
public static class ScoredSuggestion {
|
||||
private final String word;
|
||||
private final int score;
|
||||
|
||||
public ScoredSuggestion(String word, int score) {
|
||||
this.word = word;
|
||||
this.score = score;
|
||||
}
|
||||
|
||||
public String getWord() {
|
||||
return word;
|
||||
}
|
||||
|
||||
public int getScore() {
|
||||
return score;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return word + " (" + score + ")";
|
||||
}
|
||||
}
|
||||
}
|
@@ -4,23 +4,24 @@ import com.google.inject.Inject;
|
||||
import com.google.inject.name.Named;
|
||||
import nu.marginalia.functions.math.dict.SpellChecker;
|
||||
import nu.marginalia.term_frequency_dict.TermFrequencyDict;
|
||||
import nu.marginalia.model.crawl.HtmlFeature;
|
||||
import org.apache.commons.collections4.trie.PatriciaTrie;
|
||||
import org.apache.commons.lang3.StringUtils;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import java.io.BufferedInputStream;
|
||||
import java.io.IOException;
|
||||
import java.nio.file.Files;
|
||||
import java.nio.file.Path;
|
||||
import java.util.*;
|
||||
import java.util.function.Supplier;
|
||||
import java.nio.file.StandardOpenOption;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.Scanner;
|
||||
import java.util.regex.Pattern;
|
||||
import java.util.stream.Collectors;
|
||||
import java.util.stream.Stream;
|
||||
import java.util.zip.GZIPInputStream;
|
||||
|
||||
public class Suggestions {
|
||||
private PatriciaTrie<String> suggestionsTrie = null;
|
||||
private PrefixSearchStructure searchStructure = null;
|
||||
private TermFrequencyDict termFrequencyDict = null;
|
||||
private volatile boolean ready = false;
|
||||
private final SpellChecker spellChecker;
|
||||
@@ -37,39 +38,40 @@ public class Suggestions {
|
||||
this.spellChecker = spellChecker;
|
||||
|
||||
Thread.ofPlatform().start(() -> {
|
||||
suggestionsTrie = loadSuggestions(suggestionsFile);
|
||||
searchStructure = loadSuggestions(suggestionsFile);
|
||||
termFrequencyDict = dict;
|
||||
ready = true;
|
||||
logger.info("Loaded {} suggestions", suggestionsTrie.size());
|
||||
logger.info("Loaded {} suggestions", searchStructure.size());
|
||||
});
|
||||
}
|
||||
|
||||
private static PatriciaTrie<String> loadSuggestions(Path file) {
|
||||
private static PrefixSearchStructure loadSuggestions(Path file) {
|
||||
PrefixSearchStructure ret = new PrefixSearchStructure();
|
||||
|
||||
if (!Files.exists(file)) {
|
||||
logger.error("Suggestions file {} absent, loading empty suggestions db", file);
|
||||
return new PatriciaTrie<>();
|
||||
return ret;
|
||||
}
|
||||
try (var lines = Files.lines(file)) {
|
||||
var ret = new PatriciaTrie<String>();
|
||||
|
||||
lines.filter(suggestionPattern.asPredicate())
|
||||
.filter(line -> line.length()<32)
|
||||
.map(String::toLowerCase)
|
||||
.forEach(w -> ret.put(w, w));
|
||||
|
||||
// Add special keywords to the suggestions
|
||||
for (var feature : HtmlFeature.values()) {
|
||||
String keyword = feature.getKeyword();
|
||||
|
||||
ret.put(keyword, keyword);
|
||||
ret.put("-" + keyword, "-" + keyword);
|
||||
try (var scanner = new Scanner(new GZIPInputStream(new BufferedInputStream(Files.newInputStream(file, StandardOpenOption.READ))))) {
|
||||
while (scanner.hasNextLine()) {
|
||||
String line = scanner.nextLine();
|
||||
String[] parts = StringUtils.split(line, " ", 2);
|
||||
if (parts.length != 2) {
|
||||
logger.warn("Invalid suggestion line: {}", line);
|
||||
continue;
|
||||
}
|
||||
int cnt = Integer.parseInt(parts[0]);
|
||||
if (cnt > 1) {
|
||||
String word = parts[1];
|
||||
ret.insert(word, cnt);
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
catch (IOException ex) {
|
||||
logger.error("Failed to load suggestions file", ex);
|
||||
return new PatriciaTrie<>();
|
||||
return new PrefixSearchStructure();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -83,96 +85,24 @@ public class Suggestions {
|
||||
|
||||
searchWord = StringUtils.stripStart(searchWord.toLowerCase(), " ");
|
||||
|
||||
return Stream.of(
|
||||
new SuggestionStream("", getSuggestionsForKeyword(count, searchWord)),
|
||||
suggestionsForLastWord(count, searchWord),
|
||||
spellCheckStream(searchWord)
|
||||
)
|
||||
.flatMap(SuggestionsStreamable::stream)
|
||||
.limit(count)
|
||||
.collect(Collectors.toList());
|
||||
return getSuggestionsForKeyword(count, searchWord);
|
||||
}
|
||||
|
||||
private SuggestionsStreamable suggestionsForLastWord(int count, String searchWord) {
|
||||
int sp = searchWord.lastIndexOf(' ');
|
||||
|
||||
if (sp < 0) {
|
||||
return Stream::empty;
|
||||
}
|
||||
|
||||
String prefixString = searchWord.substring(0, sp+1);
|
||||
String suggestString = searchWord.substring(sp+1);
|
||||
|
||||
return new SuggestionStream(prefixString, getSuggestionsForKeyword(count, suggestString));
|
||||
|
||||
}
|
||||
|
||||
private SuggestionsStreamable spellCheckStream(String word) {
|
||||
int start = word.lastIndexOf(' ');
|
||||
String prefix;
|
||||
String corrWord;
|
||||
|
||||
if (start < 0) {
|
||||
corrWord = word;
|
||||
prefix = "";
|
||||
}
|
||||
else {
|
||||
prefix = word.substring(0, start + 1);
|
||||
corrWord = word.substring(start + 1);
|
||||
}
|
||||
|
||||
if (corrWord.length() >= MIN_SUGGEST_LENGTH) {
|
||||
Supplier<Stream<String>> suggestionsLazyEval = () -> spellChecker.correct(corrWord).stream();
|
||||
return new SuggestionStream(prefix, Stream.of(suggestionsLazyEval).flatMap(Supplier::get));
|
||||
}
|
||||
else {
|
||||
return Stream::empty;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public Stream<String> getSuggestionsForKeyword(int count, String prefix) {
|
||||
public List<String> getSuggestionsForKeyword(int count, String prefix) {
|
||||
if (!ready)
|
||||
return Stream.empty();
|
||||
return List.of();
|
||||
|
||||
if (prefix.length() < MIN_SUGGEST_LENGTH) {
|
||||
return Stream.empty();
|
||||
return List.of();
|
||||
}
|
||||
|
||||
var start = suggestionsTrie.select(prefix);
|
||||
|
||||
if (start == null) {
|
||||
return Stream.empty();
|
||||
var results = searchStructure.getTopCompletions(prefix, count);
|
||||
List<String> ret = new ArrayList<>(count);
|
||||
for (var result : results) {
|
||||
ret.add(result.getWord());
|
||||
}
|
||||
|
||||
if (!start.getKey().startsWith(prefix)) {
|
||||
return Stream.empty();
|
||||
}
|
||||
|
||||
SuggestionsValueCalculator sv = new SuggestionsValueCalculator();
|
||||
|
||||
return Stream.iterate(start.getKey(), Objects::nonNull, suggestionsTrie::nextKey)
|
||||
.takeWhile(s -> s.startsWith(prefix))
|
||||
.limit(256)
|
||||
.sorted(Comparator.comparing(sv::get).thenComparing(String::length).thenComparing(Comparator.naturalOrder()))
|
||||
.limit(count);
|
||||
return ret;
|
||||
}
|
||||
|
||||
private record SuggestionStream(String prefix, Stream<String> suggestionStream) implements SuggestionsStreamable {
|
||||
public Stream<String> stream() {
|
||||
return suggestionStream.map(s -> prefix + s);
|
||||
}
|
||||
}
|
||||
|
||||
interface SuggestionsStreamable { Stream<String> stream(); }
|
||||
|
||||
private class SuggestionsValueCalculator {
|
||||
|
||||
private final Map<String, Long> hashCache = new HashMap<>(512);
|
||||
|
||||
public int get(String s) {
|
||||
long hash = hashCache.computeIfAbsent(s, TermFrequencyDict::getStringHash);
|
||||
return -termFrequencyDict.getTermFreqHash(hash);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -59,9 +59,9 @@ public class ControlMain extends MainClass {
|
||||
download(adblockFile, new URI("https://downloads.marginalia.nu/data/adblock.txt"));
|
||||
}
|
||||
|
||||
Path suggestionsFile = dataPath.resolve("suggestions.txt");
|
||||
Path suggestionsFile = dataPath.resolve("suggestions2.txt.gz");
|
||||
if (!Files.exists(suggestionsFile)) {
|
||||
downloadGzipped(suggestionsFile, new URI("https://downloads.marginalia.nu/data/suggestions.txt.gz"));
|
||||
download(suggestionsFile, new URI("https://downloads.marginalia.nu/data/suggestions2.txt.gz"));
|
||||
}
|
||||
|
||||
Path asnRawData = dataPath.resolve("asn-data-raw-table");
|
||||
|
Reference in New Issue
Block a user