1
0
mirror of https://github.com/JvanKatwijk/qt-dab.git synced 2025-10-06 00:02:40 +02:00

added F6 key

This commit is contained in:
Jan
2025-09-19 19:52:42 +02:00
parent 4712a7e0ec
commit 0ff1568eb7
4 changed files with 68 additions and 535 deletions

View File

@@ -264,9 +264,9 @@ float bitSum = 0;
meanLevelVector [index] =
compute_avg (meanLevelVector [index], binAbsLevel, ALPHA);
DABFLOAT d_x = real (fftBin_at_1) -
DABFLOAT d_x = abs (real (fftBin_at_1)) -
meanLevelVector [index] / sqrt_2;
DABFLOAT d_y = imag (fftBin_at_1) -
DABFLOAT d_y = abs (imag (fftBin_at_1)) -
meanLevelVector [index] / sqrt_2;
DABFLOAT sigmaSQ = d_x * d_x + d_y * d_y;
sigmaSQ_Vector [index] =
@@ -276,12 +276,12 @@ float bitSum = 0;
// working best
if (this -> decoder == DECODER_1) {
DABFLOAT corrector =
1.5 * meanLevelVector [index] / sigmaSQ_Vector [index];
1.5 * meanLevelVector [index] / sigmaSQ_Vector [index];
corrector /= (1 / snr + 2);
Complex R1 = corrector * normalize (fftBin) *
(DABFLOAT)(sqrt (jan_abs (fftBin) *
sqrt (jan_abs (phaseReference [index]))));
float scaler = 100.0 / meanValue;
(DABFLOAT)(sqrt (binAbsLevel *
jan_abs (phaseReference [index])));
float scaler = 140.0 / meanValue;
DABFLOAT leftBit = - real (R1) * scaler;
limit_symmetrically (leftBit, MAX_VITERBI);
softbits [i] = (int16_t)leftBit;
@@ -298,9 +298,9 @@ float bitSum = 0;
meanLevelVector [index] / sigmaSQ_Vector [index];
corrector /= (1 / snr + 3);
Complex R1 = corrector * normalize (fftBin) *
(DABFLOAT)(sqrt (jan_abs (fftBin) *
sqrt (jan_abs (phaseReference [index]))));
float scaler = 140 / meanValue;
(DABFLOAT)(sqrt (binAbsLevel *
jan_abs (phaseReference [index])));
float scaler = 100 / meanValue;
DABFLOAT leftBit = - real (R1) * scaler;
limit_symmetrically (leftBit, MAX_VITERBI);
softbits [i] = (int16_t)leftBit;

View File

@@ -1,484 +0,0 @@
#
/*
* Copyright (C) 2014 .. 2024
* Jan van Katwijk (J.vanKatwijk@gmail.com)
* Lazy Chair Computing
*
* This file is part of Qt-DAB
*
* Qt-DAB is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Qt-DAB is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Qt-DAB; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Once the bits are "in", interpretation and manipulation
* should reconstruct the data blocks.
* Ofdm_decoder is called for Block_0 and the FIC blocks,
* its invocation results in 2 * Tu bits
*
* The commented decoders were from Thomas Neder and used in an
* experiment, the "shifting" from fftBinRaw to fftBin is from his work
*/
#include <vector>
#include "ofdm-decoder.h"
#include "radio.h"
#include "fic-handler.h"
#include "msc-handler.h"
#include "freq-interleaver.h"
#include "dab-params.h"
#include "dab-constants.h"
/**
* \brief ofdmDecoder
* The class ofdmDecoder is
* taking the data from the ofdmProcessor class in, and
* will extract the Tu samples, do an FFT and extract the
* carriers and map them on (soft) bits
*/
#define ALPHA 0.01f
static inline
Complex normalize (const Complex &V) {
float Length = jan_abs (V);
return Length == 0.0f ? Complex (0.0, 0.0) : V / (DABFLOAT)Length;
}
#define GRANULARITY 5000
#define TABLE_SIZE (int)(GRANULARITY + RAD_PER_DEGREE * 30.0)
//Complex makeComplex (DABFLOAT phase) {
//DABFLOAT p2 = phase * phase;
//DABFLOAT p3 = p2 * phase;
//DABFLOAT p4 = p3 * phase;
//DABFLOAT p5 = p4 * phase;
//DABFLOAT p6 = p5 * phase;
//DABFLOAT sine = phase - p3 / 6 + p5 / 120;
//DABFLOAT cosi = 1 - p2 / 2 + p4 / 24 - p6 / 720;
// return Complex (cosi, sine);
//}
ofdmDecoder::ofdmDecoder (RadioInterface *mr,
uint8_t dabMode,
int16_t bitDepth,
RingBuffer<float> *devBuffer_i,
RingBuffer<Complex> *iqBuffer_i) :
myRadioInterface (mr),
params (dabMode),
theTable (dabMode),
myMapper (dabMode),
fft (params. get_T_u (), false),
devBuffer (devBuffer_i),
iqBuffer (iqBuffer_i),
phaseReference (params. get_T_u ()),
conjVector (params. get_T_u ()),
fft_buffer (params. get_T_u ()),
stdDevVector (params. get_T_u ()),
IntegAbsPhaseVector (params. get_T_u ()),
meanLevelVector (params. get_T_u ()),
meanPowerVector (params. get_T_u ()),
meanSigmaSqVector (params. get_T_u ())
{
(void)bitDepth;
connect (this, &ofdmDecoder::showIQ,
myRadioInterface, &RadioInterface::showIQ);
connect (this, &ofdmDecoder::show_quality,
myRadioInterface, &RadioInterface::show_quality);
connect (this, &ofdmDecoder::show_stdDev,
myRadioInterface, &RadioInterface::show_stdDev);
//
this -> T_s = params. get_T_s ();
this -> T_u = params. get_T_u ();
this -> nrBlocks = params. get_L ();
this -> carriers = params. get_carriers ();
this -> T_g = T_s - T_u;
repetitionCounter = 10;
reset ();
iqSelector = SHOW_DECODED;
decoder = DECODER_1;
nullPower = 0.1f;
compTable. resize (TABLE_SIZE);
for (int i = 0; i < TABLE_SIZE; i ++) {
float argum = (float)(i - TABLE_SIZE / 2) / TABLE_SIZE;
compTable [i] = Complex (cos (argum), sin (argum));
}
}
ofdmDecoder::~ofdmDecoder () {
}
//
void ofdmDecoder::stop () {
}
//
void ofdmDecoder::reset () {
memset (stdDevVector. data (), 0, T_u * sizeof (DABFLOAT));
memset (IntegAbsPhaseVector. data (), 0, T_u * sizeof (DABFLOAT));
memset (meanLevelVector. data (), 0, T_u * sizeof (DABFLOAT));
memset (meanPowerVector. data (), 0, T_u * sizeof (DABFLOAT));
memset (meanSigmaSqVector. data (), 0, T_u * sizeof (DABFLOAT));
meanValue = 1.0f;
}
//
void ofdmDecoder::setPowerLevel (DABFLOAT level) {
nullPower = level * level;
}
float ofdmDecoder::processBlock_0 (
std::vector <Complex> buffer, bool withTII) {
fft. fft (buffer);
// we are now in the frequency domain, and we keep the carriers
// as coming from the FFT as phase reference.
//
memcpy (phaseReference. data (), buffer. data (),
T_u * sizeof (Complex));
Complex temp = Complex (0, 0);;
if (withTII) {
return arg (temp);
}
return 0;
}
//
// Just interested. In the ideal case the constellation of the
// decoded symbols is precisely in the four points
// k * (1, 1), k * (1, -1), k * (-1, -1), k * (-1, 1)
// To ease computation, we map all incoming values onto quadrant 1
//
// For the computation of the MER we use the definition
// from ETSI TR 101 290 (appendix C1)
float ofdmDecoder::computeQuality (Complex *v) {
static float f_n = 1;
static float f_d = 1;
for (int i = 0; i < carriers; i ++) {
Complex ss = v [T_u / 2 - carriers / 2 + i];
float ab = jan_abs (ss) / sqrt (2);
f_n = 0.99 * f_n + 0.01 * (jan_abs (ss) * jan_abs (ss));
float R = abs (abs (real (ss)) - ab);
float I = abs (abs (imag (ss)) - ab);
f_d = 0.99 * f_d + 0.01 * (R * R + I * I);
}
return 10 * log10 (f_n / f_d + 0.1);
}
// for the other blocks of data, the first step is to go from
// time to frequency domain, to get the carriers.
// we distinguish between FIC blocks and other blocks,
// only to spare a test. The mapping code is the same
static int cnt = 0;
//
// DAB (and DAB+) bits are encoded is DPSK, 2 bits per carrier,
// depending on the quadrant the carrier is in. There are
// of course two different approaches in decoding the bits
// One is looking at the X and Y components, and
// their length, relative to each other,
// Ideally, the X and Y are of equal size, in practice they are not.
int sign (DABFLOAT x) {
return x < 0 ? -1 : x > 0 ? 1 : 0;
}
void limit_symmetrically (DABFLOAT &v, float limit) {
if (v < -limit)
v = -limit;
if (v > limit)
v = limit;
}
//
// How to compute a sin or cos for (hopefully) small angles,
// Some tests showed the using the first few terms of the
// Taylor series for angles up to PI / 4 were up to the fourth
// decimal correct.
// A more performance oriented solution could be a table,
// but then, the granularity of the table should be pretty high.
void ofdmDecoder::decode (std::vector <Complex> &buffer,
int32_t blkno,
std::vector<int16_t> &softbits) {
DABFLOAT sum = 0;
memcpy (fft_buffer. data (), &((buffer. data ()) [T_g]),
T_u * sizeof (Complex));
// first step: do the FFT
fft. fft (fft_buffer. data ());
// a little optimization: we do not interchange the
// positive/negative frequencies to their right positions.
// The de-interleaving understands this
// DABFLOAT max = 0;
for (int i = 0; i < carriers; i ++) {
int16_t index = myMapper. mapIn (i);
if (index < 0)
index += T_u;
//
// decoding is computing the phase difference between
// carriers with the same index in subsequent blocks.
// The carrier of a block is the reference for the carrier
// on the same position in the next block
Complex fftBinRaw = fft_buffer [index] *
normalize (conj (phaseReference [index]));
conjVector [index] = fftBinRaw;
#define __FAST_DECODING__
#ifdef __FAST_DECODING__
float binAbsLevel = jan_abs (fftBinRaw);
softbits [i] = - real (fftBinRaw) / binAbsLevel * MAX_VITERBI;
softbits [carriers + i]
= - imag (fftBinRaw) / binAbsLevel * MAX_VITERBI;
}
#else
// In the original code, "borrowed" from Tomneda, the
// correction factor was dynamically computed, i.e
// Complex fftBin = fftBinRaw *
// makeComplex (-IntegAbsPhaseVector [index]);
// It turned out that the makeComplex function took app 10 % of the
// overall processing time.
// Table lookup was the answer, accuracy of the table increases
// by making the table longer
// since we are dealing with non int values, choosing the length
// requires attention
int dd = (int)(-IntegAbsPhaseVector [index] * GRANULARITY +
TABLE_SIZE / 2);
Complex fftBin = fftBinRaw * compTable [dd];
// Get the phase (real and absolute)
DABFLOAT re = real (fftBin);
DABFLOAT im = imag (fftBin);
if (re < 0)
re = -re;
if (im < 0)
im = -im;
Complex fftBin_at_1 = Complex (re, im);
DABFLOAT binAbsLevel = jan_abs (fftBin_at_1);
DABFLOAT phaseError = arg (fftBin_at_1) - M_PI_4;
IntegAbsPhaseVector [index] =
(1 - ALPHA) * IntegAbsPhaseVector [index] + ALPHA * phaseError;
limit_symmetrically (IntegAbsPhaseVector [index],
RAD_PER_DEGREE * (DABFLOAT)9.9);
//
// When trying alternative decoder implementations
// as implemented in DABstar by Rolf Zerr (aka old-dab) and
// Thomas Neder (aka) Tomneda, I wanted to do some investigation
// to get actual figures.
// The different decoders were tested with an old file
// with a recording of a poor signal, that ran for (almost) exact
// two minutes from the start, and the BER results were accumulated
// to get a more or less reliable answer.
// It turned out that the major effect on the decoding quality
// was with the phase shifting as done above.
// With that setting there turned out to be a marginal difference
// between decoders 1 and decoder 4,
// the other two decoders 2 and 3 performed
// slightly less (roughly speaking app 740000 repairs by
// decoder 1 and 4, and 746000 by decoders 2 and 3).
// So, we have chosen decoders 1 (most simple one) and 4 (log likelihood)
// as decoders here.
// the contributions of Rolf Zerr (aka OldDab) and
// Thomas Neder (aka tomneda) for their decoders is greatly acknowledged
//
DABFLOAT stdDev = phaseError * phaseError;
stdDevVector [index] =
compute_avg (stdDevVector [index], stdDev, ALPHA);
//
meanLevelVector [index] =
compute_avg (meanLevelVector[index],
binAbsLevel, ALPHA);
meanPowerVector [index] =
compute_avg (meanPowerVector [index],
binAbsLevel * binAbsLevel, ALPHA);
DABFLOAT meanLevelPerBin = meanLevelVector [index] / sqrt (2);
// x distance to reference point
DABFLOAT x_distance =
abs (real (fftBin)) - meanLevelPerBin;
// y distance to reference point
DABFLOAT y_distance =
abs (imag (fftBin)) - meanLevelPerBin;
DABFLOAT sigmaSq = x_distance * x_distance +
y_distance * y_distance;
meanSigmaSqVector [index] =
compute_avg (meanSigmaSqVector [index], sigmaSq, ALPHA);
DABFLOAT signalPower = meanPowerVector [index] - nullPower;
if (signalPower <= 0.0f)
signalPower = 0.1f;
DABFLOAT snr = signalPower / nullPower;
DABFLOAT ff = meanLevelVector [index] /
meanSigmaSqVector [index];
ff /= 1 / snr + 2;
DABFLOAT weight_r;
DABFLOAT weight_i;
Complex R1;
switch (decoder) {
default:
case DECODER_1:
R1 = fftBin;
softbits [i]
= - real (R1) / binAbsLevel * MAX_VITERBI;
softbits [carriers + i]
= - imag (R1) / binAbsLevel * MAX_VITERBI;
break;
case DECODER_2:
R1 = normalize (fftBin) * ff *
(DABFLOAT)(sqrt (jan_abs (fftBin) * jan_abs (phaseReference [index])));
weight_r = weight_i = -100 / meanValue;
softbits [i] = (int16_t)(real (R1) * weight_r);
softbits [carriers + i] = (int16_t)(imag (R1) * weight_i);
break;
}
sum += jan_abs (R1);
} // end of decode loop
meanValue = sum / carriers;
#endif
// From time to time we show the constellation of symbol 2.
if (blkno == 2) {
if (++cnt > repetitionCounter) {
DABFLOAT maxAmp = 0;
for (int j = -carriers / 2; j < carriers / 2; j ++)
if (j != 0)
if (jan_abs (fft_buffer [(T_u + j) % T_u]) > maxAmp)
maxAmp = jan_abs (fft_buffer [(T_u + j) % T_u]);
Complex displayVector [carriers];
if (iqSelector == SHOW_RAW) {
for (int j = 0; j < carriers; j ++)
displayVector [j] =
fft_buffer [(T_u - carriers / 2 - 1 + j) % T_u] / maxAmp;
}
else {
for (int j = 1; j < carriers; j ++) {
displayVector [j] =
conjVector [T_u / 2 - carriers / 2 + j] / maxAmp;
}
}
iqBuffer -> putDataIntoBuffer (displayVector, carriers);
float freqOffset = compute_frequencyOffset (fft_buffer. data (),
phaseReference. data ());
if (devBuffer != nullptr) {
float tempVector [carriers];
for (int i = 0; i < carriers; i ++) {
tempVector [i] =
stdDevVector [(T_u - carriers / 2 + i) % T_u];
tempVector [i] = tempVector [i] / M_PI * 180.0;
}
devBuffer -> putDataIntoBuffer (tempVector, carriers);
show_stdDev (carriers);
}
showIQ (carriers);
float Quality = computeQuality (conjVector. data ());
float timeOffset = compute_timeOffset (fft_buffer. data (),
phaseReference. data ());
// float freqOffset = compute_frequencyOffset (fft_buffer. data (),
// phaseReference. data ());
show_quality (Quality, timeOffset, freqOffset);
cnt = 0;
}
}
memcpy (phaseReference. data(), fft_buffer. data (),
T_u * sizeof (Complex));
}
//
// While DAB symbols do not carry pilots, it is known that
// arg (carrier [i, j] * conj (carrier [i + 1, j])
// should be K * M_PI / 4, (k in {1, 3, 5, 7}) so basically
// carriers in decoded symbols can be used as if they were pilots
//
// so, with that in mind we experiment with formula 5.39
// and 5.40 from "OFDM Baseband Receiver Design for Wireless
// Communications (Chiueh and Tsai)"
float ofdmDecoder::compute_timeOffset (Complex *r, Complex *v) {
Complex sum = Complex (0, 0);
for (int i = -carriers / 2; i < carriers / 2; i += 6) {
int index_1 = i < 0 ? i + T_u : i;
int index_2 = (i + 1) < 0 ? (i + 1) + T_u : (i + 1);
Complex s = r [index_1] * conj (v [index_2]);
s = Complex (abs (real (s)), abs (imag (s)));
Complex leftTerm = s * conj (Complex (abs (s) / sqrt (2),
abs (s) / sqrt (2)));
s = r [index_2] * conj (v [index_2]);
s = Complex (abs (real (s)), abs (imag (s)));
Complex rightTerm = s * conj (Complex (abs (s) / sqrt (2),
abs (s) / sqrt (2)));
sum += conj (leftTerm) * rightTerm;
}
return arg (sum);
}
//
// Ideally, the processed carrier should have a value
// equal to (2 * k + 1) * PI / 4
// The offset is a measure of the frequency "error"
float ofdmDecoder::compute_frequencyOffset (Complex *r, Complex *c) {
Complex theta = Complex (0, 0);
static float vv = 0;
for (int i = - carriers / 2; i < carriers / 2; i += 6) {
int index = i < 0 ? i + T_u : i;
Complex val = r [index] * conj (c [index]);
val = Complex (abs (real (val)), abs (imag (val)));
theta += val * Complex (1, -1);
}
float uu = arg (theta) / (2 * M_PI) * SAMPLERATE / T_u;
vv = 0.9 * vv + 0.1 * abs (uu);;
return vv;
}
float ofdmDecoder::compute_clockOffset (Complex *r, Complex *v) {
float offsa = 0;
int offsb = 0;
for (int i = - carriers / 2; i < carriers / 2; i += 6) {
int index = i < 0 ? (i + T_u) : i;
int index_2 = i + carriers / 2;
Complex a1 =
Complex (abs (real (r [index])),
abs (imag (r [index])));
Complex a2 =
Complex (abs (real (v [index])),
abs (imag (v [index])));
float s = abs (arg (a1 * conj (a2)));
offsa += index * s;
offsb += index_2 * index_2;
}
float sampleClockOffset =
offsa / (2 * M_PI * (float)T_s/ T_u * offsb);
return sampleClockOffset;
}
void ofdmDecoder::handle_iqSelector () {
if (iqSelector == SHOW_RAW)
iqSelector = SHOW_DECODED;
else
iqSelector = SHOW_RAW;
}
void ofdmDecoder::handle_decoderSelector (int decoder) {
this -> decoder = decoder;
}

View File

@@ -1921,48 +1921,10 @@ bool RadioInterface::eventFilter (QObject *obj, QEvent *event) {
theEnsembleHandler -> selectCurrentItem ();
return true;
}
else {
// if (theEnsembleHandler -> hasFocus ())
// fprintf (stderr, "ensembleHandler\n");
// else
// if (configHandler_p -> hasFocus ())
// fprintf (stderr, "Config handler\n");
// else
// if (techWindow_p -> hasFocus ())
// fprintf (stderr, "techWindow\n");
// else
// fprintf (stderr, "focus elsewhere\n");
if (keyEvent -> key () == Qt::Key_F1) {
theEnsembleHandler -> activateWindow ();
theEnsembleHandler -> setFocus ();
return true;
}
else
if (keyEvent -> key () == Qt::Key_F2) {
configHandler_p -> activateWindow ();
configHandler_p -> setFocus ();
return true;
}
else
if (keyEvent -> key () == Qt::Key_F3) {
techWindow_p -> activateWindow ();
techWindow_p -> setFocus ();
return true;
}
else
if (keyEvent -> key () == Qt::Key_F4) {
// theSCANHandler. show ();
// theSCANHandler. activateWindow ();
// theSCANHandler. setFocus ();
this -> activateWindow ();
this -> setFocus ();
return true;
}
else
return false;
}
else // handling function keys
if (handle_keyEvent (keyEvent -> key ()))
return true;
}
else
// An option is to click - right hand mouse button - on a
// service in the scanlist in order to add it to the
// list of favorites
@@ -4813,6 +4775,59 @@ void RadioInterface::journalineData (QByteArray data,
void RadioInterface::focusInEvent (QFocusEvent *evt) {
fprintf (stderr, "In focus now\n");
}
//
// This function is called whenever a key is touched
// that is not the return key
bool RadioInterface::handle_keyEvent (int theKey) {
switch (theKey) {
case Qt::Key_F1:
theEnsembleHandler -> activateWindow ();
theEnsembleHandler -> setFocus ();
return true;
case Qt::Key_F2:
configHandler_p -> activateWindow ();
configHandler_p -> setFocus ();
return true;
case Qt::Key_F3:
techWindow_p -> activateWindow ();
techWindow_p -> setFocus ();
return true;
case Qt::Key_F4:
this -> activateWindow ();
this -> setFocus ();
return true;
case Qt::Key_F6:
if (theEnsembleHandler -> hasFocus ()) {
this -> activateWindow ();
this -> setFocus ();
return true;
}
else
if (this -> hasFocus ()) {
configHandler_p -> activateWindow ();
configHandler_p -> setFocus ();
return true;
}
else
if (configHandler_p -> hasFocus ()) {
techWindow_p -> activateWindow ();
techWindow_p -> setFocus ();
return true;
}
else
if (techWindow_p -> hasFocus ()) {
theEnsembleHandler -> activateWindow ();
theEnsembleHandler -> setFocus ();
return true;
}
else
return false;
default:
return false;
}
}

View File

@@ -452,6 +452,8 @@ private:
void announcement_start (uint16_t, uint16_t);
void announcement_stop ();
bool handle_keyEvent (int);
//
signals:
void select_ensemble_font ();