[core] use memcpy instead of hand rolling aligned cases

Hand rolling memcpy like this is always frowned upon because the compiler has more insight on whats going on (plus the code resolves to a worse version of itself on assembly). This removes some branches that are just straight up redundant. May save stuff especially for systems without fastmem enabled.

Signed-off-by: lizzie <lizzie@eden-emu.dev>
This commit is contained in:
lizzie
2025-10-01 08:04:34 +00:00
committed by crueter
parent 1a13e79c3d
commit 3d08714206

View File

@@ -10,6 +10,7 @@
#include <mutex>
#include <span>
#include <thread>
#include <type_traits>
#include <vector>
#include "common/assert.h"
@@ -681,22 +682,17 @@ struct Memory::Impl {
}
}
[[nodiscard]] u8* GetPointerImpl(u64 vaddr, auto on_unmapped, auto on_rasterizer) const {
template<typename F, typename G>
[[nodiscard]] u8* GetPointerImpl(u64 vaddr, F&& on_unmapped, G&& on_rasterizer) const {
// AARCH64 masks the upper 16 bit of all memory accesses
vaddr = vaddr & 0xffffffffffffULL;
if (!AddressSpaceContains(*current_page_table, vaddr, 1)) [[unlikely]] {
on_unmapped();
return nullptr;
} else {
vaddr &= 0xffffffffffffULL;
if (AddressSpaceContains(*current_page_table, vaddr, 1)) [[likely]] {
// Avoid adding any extra logic to this fast-path block
const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Raw();
if (const uintptr_t pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) {
if (const uintptr_t pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) [[likely]] {
return reinterpret_cast<u8*>(pointer + vaddr);
} else {
switch (Common::PageTable::PageInfo::ExtractType(raw_pointer)) {
case Common::PageType::Unmapped:
on_unmapped();
return nullptr;
case Common::PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ 0x{:016X}", vaddr);
return nullptr;
@@ -707,11 +703,18 @@ struct Memory::Impl {
on_rasterizer();
return host_ptr;
}
case Common::PageType::Unmapped: [[unlikely]] {
on_unmapped();
return nullptr;
}
default:
UNREACHABLE();
}
return nullptr;
}
} else {
on_unmapped();
return nullptr;
}
}
@@ -729,172 +732,38 @@ struct Memory::Impl {
GetInteger(vaddr), []() {}, []() {});
}
/**
* Reads a particular data type out of memory at the given virtual address.
*
* @param vaddr The virtual address to read the data type from.
*
* @tparam T The data type to read out of memory. This type *must* be
* trivially copyable, otherwise the behavior of this function
* is undefined.
*
* @returns The instance of T read from the specified virtual address.
*/
/// @brief Reads a particular data type out of memory at the given virtual address.
/// @param vaddr The virtual address to read the data type from.
/// @tparam T The data type to read out of memory.
/// @returns The instance of T read from the specified virtual address.
template <typename T>
T Read(Common::ProcessAddress vaddr) {
// Fast path for aligned reads of common sizes
inline T Read(Common::ProcessAddress vaddr) requires(std::is_trivially_copyable_v<T>) noexcept {
const u64 addr = GetInteger(vaddr);
if constexpr (std::is_same_v<T, u8> || std::is_same_v<T, s8>) {
// 8-bit reads are always aligned
const u8* const ptr = GetPointerImpl(
addr,
[addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read8 @ 0x{:016X}", addr);
},
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
return static_cast<T>(*ptr);
}
return 0;
} else if constexpr (std::is_same_v<T, u16_le> || std::is_same_v<T, s16_le>) {
// Check alignment for 16-bit reads
if ((addr & 1) == 0) {
const u8* const ptr = GetPointerImpl(
addr,
[addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read16 @ 0x{:016X}", addr);
},
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
return static_cast<T>(*reinterpret_cast<const u16*>(ptr));
}
}
} else if constexpr (std::is_same_v<T, u32_le> || std::is_same_v<T, s32_le>) {
// Check alignment for 32-bit reads
if ((addr & 3) == 0) {
const u8* const ptr = GetPointerImpl(
addr,
[addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read32 @ 0x{:016X}", addr);
},
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
return static_cast<T>(*reinterpret_cast<const u32*>(ptr));
}
}
} else if constexpr (std::is_same_v<T, u64_le> || std::is_same_v<T, s64_le>) {
// Check alignment for 64-bit reads
if ((addr & 7) == 0) {
const u8* const ptr = GetPointerImpl(
addr,
[addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read64 @ 0x{:016X}", addr);
},
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
return static_cast<T>(*reinterpret_cast<const u64*>(ptr));
}
}
}
// Fall back to the general case for other types or unaligned access
T result = 0;
const u8* const ptr = GetPointerImpl(
addr,
[addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:016X}", sizeof(T) * 8, addr);
},
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
if (auto const ptr = GetPointerImpl(addr, [addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:016X}", sizeof(T) * 8, addr);
}, [&]() {
HandleRasterizerDownload(addr, sizeof(T));
}); ptr) [[likely]] {
// It may be tempting to rewrite this particular section to use "reinterpret_cast";
// afterall, it's trivially copyable so surely it can be copied ov- Alignment.
// Remember, alignment. memcpy() will deal with all the alignment extremely fast.
T result{};
std::memcpy(&result, ptr, sizeof(T));
return result;
}
return result;
return T{};
}
/**
* Writes a particular data type to memory at the given virtual address.
*
* @param vaddr The virtual address to write the data type to.
*
* @tparam T The data type to write to memory. This type *must* be
* trivially copyable, otherwise the behavior of this function
* is undefined.
*/
/// @brief Writes a particular data type to memory at the given virtual address.
/// @param vaddr The virtual address to write the data type to.
/// @tparam T The data type to write to memory.
template <typename T>
void Write(Common::ProcessAddress vaddr, const T data) {
// Fast path for aligned writes of common sizes
inline void Write(Common::ProcessAddress vaddr, const T data) requires(std::is_trivially_copyable_v<T>) noexcept {
const u64 addr = GetInteger(vaddr);
if constexpr (std::is_same_v<T, u8> || std::is_same_v<T, s8>) {
// 8-bit writes are always aligned
u8* const ptr = GetPointerImpl(
addr,
[addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write8 @ 0x{:016X} = 0x{:02X}", addr,
static_cast<u8>(data));
},
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
*ptr = static_cast<u8>(data);
}
return;
} else if constexpr (std::is_same_v<T, u16_le> || std::is_same_v<T, s16_le>) {
// Check alignment for 16-bit writes
if ((addr & 1) == 0) {
u8* const ptr = GetPointerImpl(
addr,
[addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write16 @ 0x{:016X} = 0x{:04X}", addr,
static_cast<u16>(data));
},
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
*reinterpret_cast<u16*>(ptr) = static_cast<u16>(data);
return;
}
}
} else if constexpr (std::is_same_v<T, u32_le> || std::is_same_v<T, s32_le>) {
// Check alignment for 32-bit writes
if ((addr & 3) == 0) {
u8* const ptr = GetPointerImpl(
addr,
[addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write32 @ 0x{:016X} = 0x{:08X}", addr,
static_cast<u32>(data));
},
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
*reinterpret_cast<u32*>(ptr) = static_cast<u32>(data);
return;
}
}
} else if constexpr (std::is_same_v<T, u64_le> || std::is_same_v<T, s64_le>) {
// Check alignment for 64-bit writes
if ((addr & 7) == 0) {
u8* const ptr = GetPointerImpl(
addr,
[addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write64 @ 0x{:016X} = 0x{:016X}", addr,
static_cast<u64>(data));
},
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
*reinterpret_cast<u64*>(ptr) = static_cast<u64>(data);
return;
}
}
}
// Fall back to the general case for other types or unaligned access
u8* const ptr = GetPointerImpl(
addr,
[addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write{} @ 0x{:016X} = 0x{:016X}", sizeof(T) * 8,
addr, static_cast<u64>(data));
},
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
if (auto const ptr = GetPointerImpl(addr, [addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write{} @ 0x{:016X} = 0x{:016X}", sizeof(T) * 8, addr, u64(data));
}, [&]() { HandleRasterizerWrite(addr, sizeof(T)); }); ptr) [[likely]]
std::memcpy(ptr, &data, sizeof(T));
}
}
template <typename T>